| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aaliou3lem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for aaliou3 24106. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aaliou3lem.a |
|
| aaliou3lem.b |
|
| Ref | Expression |
|---|---|
| aaliou3lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . 3
| |
| 2 | nnz 11399 |
. . . 4
| |
| 3 | uzid 11702 |
. . . 4
| |
| 4 | 2, 3 | syl 17 |
. . 3
|
| 5 | aaliou3lem.a |
. . . 4
| |
| 6 | 5 | aaliou3lem1 24097 |
. . 3
|
| 7 | aaliou3lem.b |
. . . . . 6
| |
| 8 | 5, 7 | aaliou3lem2 24098 |
. . . . 5
|
| 9 | 0xr 10086 |
. . . . . 6
| |
| 10 | elioc2 12236 |
. . . . . 6
| |
| 11 | 9, 6, 10 | sylancr 695 |
. . . . 5
|
| 12 | 8, 11 | mpbid 222 |
. . . 4
|
| 13 | 12 | simp1d 1073 |
. . 3
|
| 14 | halfcn 11247 |
. . . . . 6
| |
| 15 | 14 | a1i 11 |
. . . . 5
|
| 16 | halfre 11246 |
. . . . . . . . 9
| |
| 17 | halfgt0 11248 |
. . . . . . . . 9
| |
| 18 | 16, 17 | elrpii 11835 |
. . . . . . . 8
|
| 19 | rprege0 11847 |
. . . . . . . 8
| |
| 20 | absid 14036 |
. . . . . . . 8
| |
| 21 | 18, 19, 20 | mp2b 10 |
. . . . . . 7
|
| 22 | halflt1 11250 |
. . . . . . 7
| |
| 23 | 21, 22 | eqbrtri 4674 |
. . . . . 6
|
| 24 | 23 | a1i 11 |
. . . . 5
|
| 25 | 2rp 11837 |
. . . . . . 7
| |
| 26 | nnnn0 11299 |
. . . . . . . . . 10
| |
| 27 | faccl 13070 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
|
| 29 | 28 | nnzd 11481 |
. . . . . . . 8
|
| 30 | 29 | znegcld 11484 |
. . . . . . 7
|
| 31 | rpexpcl 12879 |
. . . . . . 7
| |
| 32 | 25, 30, 31 | sylancr 695 |
. . . . . 6
|
| 33 | 32 | rpcnd 11874 |
. . . . 5
|
| 34 | 2, 15, 24, 33, 5 | geolim3 24094 |
. . . 4
|
| 35 | seqex 12803 |
. . . . 5
| |
| 36 | ovex 6678 |
. . . . 5
| |
| 37 | 35, 36 | breldm 5329 |
. . . 4
|
| 38 | 34, 37 | syl 17 |
. . 3
|
| 39 | 12 | simp2d 1074 |
. . . . 5
|
| 40 | 13, 39 | elrpd 11869 |
. . . 4
|
| 41 | 40 | rpge0d 11876 |
. . 3
|
| 42 | 12 | simp3d 1075 |
. . 3
|
| 43 | 1, 4, 6, 13, 38, 41, 42 | cvgcmp 14548 |
. 2
|
| 44 | eqidd 2623 |
. . 3
| |
| 45 | 1, 1, 4, 44, 40, 43 | isumrpcl 14575 |
. 2
|
| 46 | eqidd 2623 |
. . . 4
| |
| 47 | 1, 2, 44, 13, 46, 6, 42, 43, 38 | isumle 14576 |
. . 3
|
| 48 | 6 | recnd 10068 |
. . . . 5
|
| 49 | 1, 2, 46, 48, 34 | isumclim 14488 |
. . . 4
|
| 50 | 1mhlfehlf 11251 |
. . . . . 6
| |
| 51 | 50 | oveq2i 6661 |
. . . . 5
|
| 52 | 2cn 11091 |
. . . . . . . 8
| |
| 53 | mulcl 10020 |
. . . . . . . 8
| |
| 54 | 33, 52, 53 | sylancl 694 |
. . . . . . 7
|
| 55 | 54 | div1d 10793 |
. . . . . 6
|
| 56 | 1rp 11836 |
. . . . . . . . 9
| |
| 57 | rpcnne0 11850 |
. . . . . . . . 9
| |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . 8
|
| 59 | 2cnne0 11242 |
. . . . . . . 8
| |
| 60 | divdiv2 10737 |
. . . . . . . 8
| |
| 61 | 58, 59, 60 | mp3an23 1416 |
. . . . . . 7
|
| 62 | 33, 61 | syl 17 |
. . . . . 6
|
| 63 | mulcom 10022 |
. . . . . . 7
| |
| 64 | 52, 33, 63 | sylancr 695 |
. . . . . 6
|
| 65 | 55, 62, 64 | 3eqtr4d 2666 |
. . . . 5
|
| 66 | 51, 65 | syl5eq 2668 |
. . . 4
|
| 67 | 49, 66 | eqtrd 2656 |
. . 3
|
| 68 | 47, 67 | breqtrd 4679 |
. 2
|
| 69 | 43, 45, 68 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ioc 12180 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 |
| This theorem is referenced by: aaliou3lem4 24101 aaliou3lem7 24104 |
| Copyright terms: Public domain | W3C validator |