MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1 Structured version   Visualization version   Unicode version

Theorem i1f1 23457
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
Assertion
Ref Expression
i1f1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F  e.  dom  S.1 )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem i1f1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 i1f1.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
21i1f1lem 23456 . . . . 5  |-  ( F : RR --> { 0 ,  1 }  /\  ( A  e.  dom  vol 
->  ( `' F " { 1 } )  =  A ) )
32simpli 474 . . . 4  |-  F : RR
--> { 0 ,  1 }
4 0re 10040 . . . . 5  |-  0  e.  RR
5 1re 10039 . . . . 5  |-  1  e.  RR
6 prssi 4353 . . . . 5  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
74, 5, 6mp2an 708 . . . 4  |-  { 0 ,  1 }  C_  RR
8 fss 6056 . . . 4  |-  ( ( F : RR --> { 0 ,  1 }  /\  { 0 ,  1 } 
C_  RR )  ->  F : RR --> RR )
93, 7, 8mp2an 708 . . 3  |-  F : RR
--> RR
109a1i 11 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F : RR --> RR )
11 prfi 8235 . . 3  |-  { 0 ,  1 }  e.  Fin
12 1ex 10035 . . . . . . . 8  |-  1  e.  _V
1312prid2 4298 . . . . . . 7  |-  1  e.  { 0 ,  1 }
14 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
1514prid1 4297 . . . . . . 7  |-  0  e.  { 0 ,  1 }
1613, 15keepel 4155 . . . . . 6  |-  if ( x  e.  A , 
1 ,  0 )  e.  { 0 ,  1 }
1716a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  x  e.  RR )  ->  if ( x  e.  A ,  1 ,  0 )  e. 
{ 0 ,  1 } )
1817, 1fmptd 6385 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F : RR --> { 0 ,  1 } )
19 frn 6053 . . . 4  |-  ( F : RR --> { 0 ,  1 }  ->  ran 
F  C_  { 0 ,  1 } )
2018, 19syl 17 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ran  F  C_  { 0 ,  1 } )
21 ssfi 8180 . . 3  |-  ( ( { 0 ,  1 }  e.  Fin  /\  ran  F  C_  { 0 ,  1 } )  ->  ran  F  e.  Fin )
2211, 20, 21sylancr 695 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ran  F  e.  Fin )
233, 19ax-mp 5 . . . . . . . . . . 11  |-  ran  F  C_ 
{ 0 ,  1 }
24 df-pr 4180 . . . . . . . . . . . 12  |-  { 0 ,  1 }  =  ( { 0 }  u.  { 1 } )
2524equncomi 3759 . . . . . . . . . . 11  |-  { 0 ,  1 }  =  ( { 1 }  u.  { 0 } )
2623, 25sseqtri 3637 . . . . . . . . . 10  |-  ran  F  C_  ( { 1 }  u.  { 0 } )
27 ssdif 3745 . . . . . . . . . 10  |-  ( ran 
F  C_  ( {
1 }  u.  {
0 } )  -> 
( ran  F  \  {
0 } )  C_  ( ( { 1 }  u.  { 0 } )  \  {
0 } ) )
2826, 27ax-mp 5 . . . . . . . . 9  |-  ( ran 
F  \  { 0 } )  C_  (
( { 1 }  u.  { 0 } )  \  { 0 } )
29 difun2 4048 . . . . . . . . . 10  |-  ( ( { 1 }  u.  { 0 } )  \  { 0 } )  =  ( { 1 }  \  { 0 } )
30 difss 3737 . . . . . . . . . 10  |-  ( { 1 }  \  {
0 } )  C_  { 1 }
3129, 30eqsstri 3635 . . . . . . . . 9  |-  ( ( { 1 }  u.  { 0 } )  \  { 0 } ) 
C_  { 1 }
3228, 31sstri 3612 . . . . . . . 8  |-  ( ran 
F  \  { 0 } )  C_  { 1 }
3332sseli 3599 . . . . . . 7  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  y  e.  {
1 } )
34 elsni 4194 . . . . . . 7  |-  ( y  e.  { 1 }  ->  y  =  1 )
3533, 34syl 17 . . . . . 6  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  y  =  1 )
3635sneqd 4189 . . . . 5  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  { y }  =  { 1 } )
3736imaeq2d 5466 . . . 4  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  ( `' F " { y } )  =  ( `' F " { 1 } ) )
382simpri 478 . . . . 5  |-  ( A  e.  dom  vol  ->  ( `' F " { 1 } )  =  A )
3938adantr 481 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( `' F " { 1 } )  =  A )
4037, 39sylan9eqr 2678 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } )  =  A )
41 simpll 790 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  A  e.  dom  vol )
4240, 41eqeltrd 2701 . 2  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } )  e.  dom  vol )
4340fveq2d 6195 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { y } ) )  =  ( vol `  A
) )
44 simplr 792 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  A
)  e.  RR )
4543, 44eqeltrd 2701 . 2  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { y } ) )  e.  RR )
4610, 22, 42, 45i1fd 23448 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F  e.  dom  S.1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    C_ wss 3574   ifcif 4086   {csn 4177   {cpr 4179    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937   volcvol 23232   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg11  23458  itg2const  23507  itg2addnclem  33461
  Copyright terms: Public domain W3C validator