Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccolsum Structured version   Visualization version   Unicode version

Theorem bccolsum 31625
Description: A column-sum rule for binomial coefficents. (Contributed by Scott Fenton, 24-Jun-2020.)
Assertion
Ref Expression
bccolsum  |-  ( ( N  e.  NN0  /\  C  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( k  _C  C )  =  ( ( N  +  1 )  _C  ( C  +  1 ) ) )
Distinct variable groups:    k, N    C, k

Proof of Theorem bccolsum
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( m  =  0  ->  (
0 ... m )  =  ( 0 ... 0
) )
21sumeq1d 14431 . . . . 5  |-  ( m  =  0  ->  sum_ k  e.  ( 0 ... m
) ( k  _C  C )  =  sum_ k  e.  ( 0 ... 0 ) ( k  _C  C ) )
3 oveq1 6657 . . . . . . 7  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
4 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
53, 4syl6eq 2672 . . . . . 6  |-  ( m  =  0  ->  (
m  +  1 )  =  1 )
65oveq1d 6665 . . . . 5  |-  ( m  =  0  ->  (
( m  +  1 )  _C  ( C  +  1 ) )  =  ( 1  _C  ( C  +  1 ) ) )
72, 6eqeq12d 2637 . . . 4  |-  ( m  =  0  ->  ( sum_ k  e.  ( 0 ... m ) ( k  _C  C )  =  ( ( m  +  1 )  _C  ( C  +  1 ) )  <->  sum_ k  e.  ( 0 ... 0
) ( k  _C  C )  =  ( 1  _C  ( C  +  1 ) ) ) )
87imbi2d 330 . . 3  |-  ( m  =  0  ->  (
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... m ) ( k  _C  C
)  =  ( ( m  +  1 )  _C  ( C  + 
1 ) ) )  <-> 
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... 0 ) ( k  _C  C
)  =  ( 1  _C  ( C  + 
1 ) ) ) ) )
9 oveq2 6658 . . . . . 6  |-  ( m  =  n  ->  (
0 ... m )  =  ( 0 ... n
) )
109sumeq1d 14431 . . . . 5  |-  ( m  =  n  ->  sum_ k  e.  ( 0 ... m
) ( k  _C  C )  =  sum_ k  e.  ( 0 ... n ) ( k  _C  C ) )
11 oveq1 6657 . . . . . 6  |-  ( m  =  n  ->  (
m  +  1 )  =  ( n  + 
1 ) )
1211oveq1d 6665 . . . . 5  |-  ( m  =  n  ->  (
( m  +  1 )  _C  ( C  +  1 ) )  =  ( ( n  +  1 )  _C  ( C  +  1 ) ) )
1310, 12eqeq12d 2637 . . . 4  |-  ( m  =  n  ->  ( sum_ k  e.  ( 0 ... m ) ( k  _C  C )  =  ( ( m  +  1 )  _C  ( C  +  1 ) )  <->  sum_ k  e.  ( 0 ... n
) ( k  _C  C )  =  ( ( n  +  1 )  _C  ( C  +  1 ) ) ) )
1413imbi2d 330 . . 3  |-  ( m  =  n  ->  (
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... m ) ( k  _C  C
)  =  ( ( m  +  1 )  _C  ( C  + 
1 ) ) )  <-> 
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... n ) ( k  _C  C
)  =  ( ( n  +  1 )  _C  ( C  + 
1 ) ) ) ) )
15 oveq2 6658 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
0 ... m )  =  ( 0 ... (
n  +  1 ) ) )
1615sumeq1d 14431 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  sum_ k  e.  ( 0 ... m
) ( k  _C  C )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( k  _C  C ) )
17 oveq1 6657 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
m  +  1 )  =  ( ( n  +  1 )  +  1 ) )
1817oveq1d 6665 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( m  +  1 )  _C  ( C  +  1 ) )  =  ( ( ( n  +  1 )  +  1 )  _C  ( C  +  1 ) ) )
1916, 18eqeq12d 2637 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  ( sum_ k  e.  ( 0 ... m ) ( k  _C  C )  =  ( ( m  +  1 )  _C  ( C  +  1 ) )  <->  sum_ k  e.  ( 0 ... (
n  +  1 ) ) ( k  _C  C )  =  ( ( ( n  + 
1 )  +  1 )  _C  ( C  +  1 ) ) ) )
2019imbi2d 330 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... m ) ( k  _C  C
)  =  ( ( m  +  1 )  _C  ( C  + 
1 ) ) )  <-> 
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( k  _C  C
)  =  ( ( ( n  +  1 )  +  1 )  _C  ( C  + 
1 ) ) ) ) )
21 oveq2 6658 . . . . . 6  |-  ( m  =  N  ->  (
0 ... m )  =  ( 0 ... N
) )
2221sumeq1d 14431 . . . . 5  |-  ( m  =  N  ->  sum_ k  e.  ( 0 ... m
) ( k  _C  C )  =  sum_ k  e.  ( 0 ... N ) ( k  _C  C ) )
23 oveq1 6657 . . . . . 6  |-  ( m  =  N  ->  (
m  +  1 )  =  ( N  + 
1 ) )
2423oveq1d 6665 . . . . 5  |-  ( m  =  N  ->  (
( m  +  1 )  _C  ( C  +  1 ) )  =  ( ( N  +  1 )  _C  ( C  +  1 ) ) )
2522, 24eqeq12d 2637 . . . 4  |-  ( m  =  N  ->  ( sum_ k  e.  ( 0 ... m ) ( k  _C  C )  =  ( ( m  +  1 )  _C  ( C  +  1 ) )  <->  sum_ k  e.  ( 0 ... N
) ( k  _C  C )  =  ( ( N  +  1 )  _C  ( C  +  1 ) ) ) )
2625imbi2d 330 . . 3  |-  ( m  =  N  ->  (
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... m ) ( k  _C  C
)  =  ( ( m  +  1 )  _C  ( C  + 
1 ) ) )  <-> 
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... N ) ( k  _C  C
)  =  ( ( N  +  1 )  _C  ( C  + 
1 ) ) ) ) )
27 0z 11388 . . . . 5  |-  0  e.  ZZ
28 0nn0 11307 . . . . . . 7  |-  0  e.  NN0
29 nn0z 11400 . . . . . . 7  |-  ( C  e.  NN0  ->  C  e.  ZZ )
30 bccl 13109 . . . . . . 7  |-  ( ( 0  e.  NN0  /\  C  e.  ZZ )  ->  ( 0  _C  C
)  e.  NN0 )
3128, 29, 30sylancr 695 . . . . . 6  |-  ( C  e.  NN0  ->  ( 0  _C  C )  e. 
NN0 )
3231nn0cnd 11353 . . . . 5  |-  ( C  e.  NN0  ->  ( 0  _C  C )  e.  CC )
33 oveq1 6657 . . . . . 6  |-  ( k  =  0  ->  (
k  _C  C )  =  ( 0  _C  C ) )
3433fsum1 14476 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( 0  _C  C
)  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( k  _C  C
)  =  ( 0  _C  C ) )
3527, 32, 34sylancr 695 . . . 4  |-  ( C  e.  NN0  ->  sum_ k  e.  ( 0 ... 0
) ( k  _C  C )  =  ( 0  _C  C ) )
36 elnn0 11294 . . . . 5  |-  ( C  e.  NN0  <->  ( C  e.  NN  \/  C  =  0 ) )
37 1red 10055 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  1  e.  RR )
38 nnrp 11842 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  RR+ )
3937, 38ltaddrp2d 11906 . . . . . . . . . 10  |-  ( C  e.  NN  ->  1  <  ( C  +  1 ) )
40 peano2nn 11032 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  ( C  +  1 )  e.  NN )
4140nnred 11035 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  ( C  +  1 )  e.  RR )
4237, 41ltnled 10184 . . . . . . . . . 10  |-  ( C  e.  NN  ->  (
1  <  ( C  +  1 )  <->  -.  ( C  +  1 )  <_  1 ) )
4339, 42mpbid 222 . . . . . . . . 9  |-  ( C  e.  NN  ->  -.  ( C  +  1
)  <_  1 )
44 elfzle2 12345 . . . . . . . . 9  |-  ( ( C  +  1 )  e.  ( 0 ... 1 )  ->  ( C  +  1 )  <_  1 )
4543, 44nsyl 135 . . . . . . . 8  |-  ( C  e.  NN  ->  -.  ( C  +  1
)  e.  ( 0 ... 1 ) )
4645iffalsed 4097 . . . . . . 7  |-  ( C  e.  NN  ->  if ( ( C  + 
1 )  e.  ( 0 ... 1 ) ,  ( ( ! `
 1 )  / 
( ( ! `  ( 1  -  ( C  +  1 ) ) )  x.  ( ! `  ( C  +  1 ) ) ) ) ,  0 )  =  0 )
47 1nn0 11308 . . . . . . . 8  |-  1  e.  NN0
4840nnzd 11481 . . . . . . . 8  |-  ( C  e.  NN  ->  ( C  +  1 )  e.  ZZ )
49 bcval 13091 . . . . . . . 8  |-  ( ( 1  e.  NN0  /\  ( C  +  1
)  e.  ZZ )  ->  ( 1  _C  ( C  +  1 ) )  =  if ( ( C  + 
1 )  e.  ( 0 ... 1 ) ,  ( ( ! `
 1 )  / 
( ( ! `  ( 1  -  ( C  +  1 ) ) )  x.  ( ! `  ( C  +  1 ) ) ) ) ,  0 ) )
5047, 48, 49sylancr 695 . . . . . . 7  |-  ( C  e.  NN  ->  (
1  _C  ( C  +  1 ) )  =  if ( ( C  +  1 )  e.  ( 0 ... 1 ) ,  ( ( ! `  1
)  /  ( ( ! `  ( 1  -  ( C  + 
1 ) ) )  x.  ( ! `  ( C  +  1
) ) ) ) ,  0 ) )
51 bc0k 13098 . . . . . . 7  |-  ( C  e.  NN  ->  (
0  _C  C )  =  0 )
5246, 50, 513eqtr4rd 2667 . . . . . 6  |-  ( C  e.  NN  ->  (
0  _C  C )  =  ( 1  _C  ( C  +  1 ) ) )
53 bcnn 13099 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
5428, 53ax-mp 5 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
55 bcnn 13099 . . . . . . . . 9  |-  ( 1  e.  NN0  ->  ( 1  _C  1 )  =  1 )
5647, 55ax-mp 5 . . . . . . . 8  |-  ( 1  _C  1 )  =  1
5754, 56eqtr4i 2647 . . . . . . 7  |-  ( 0  _C  0 )  =  ( 1  _C  1
)
58 oveq2 6658 . . . . . . 7  |-  ( C  =  0  ->  (
0  _C  C )  =  ( 0  _C  0 ) )
59 oveq1 6657 . . . . . . . . 9  |-  ( C  =  0  ->  ( C  +  1 )  =  ( 0  +  1 ) )
6059, 4syl6eq 2672 . . . . . . . 8  |-  ( C  =  0  ->  ( C  +  1 )  =  1 )
6160oveq2d 6666 . . . . . . 7  |-  ( C  =  0  ->  (
1  _C  ( C  +  1 ) )  =  ( 1  _C  1 ) )
6257, 58, 613eqtr4a 2682 . . . . . 6  |-  ( C  =  0  ->  (
0  _C  C )  =  ( 1  _C  ( C  +  1 ) ) )
6352, 62jaoi 394 . . . . 5  |-  ( ( C  e.  NN  \/  C  =  0 )  ->  ( 0  _C  C )  =  ( 1  _C  ( C  +  1 ) ) )
6436, 63sylbi 207 . . . 4  |-  ( C  e.  NN0  ->  ( 0  _C  C )  =  ( 1  _C  ( C  +  1 ) ) )
6535, 64eqtrd 2656 . . 3  |-  ( C  e.  NN0  ->  sum_ k  e.  ( 0 ... 0
) ( k  _C  C )  =  ( 1  _C  ( C  +  1 ) ) )
66 elnn0uz 11725 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  n  e.  ( ZZ>=
`  0 ) )
6766biimpi 206 . . . . . . . . 9  |-  ( n  e.  NN0  ->  n  e.  ( ZZ>= `  0 )
)
6867adantr 481 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  ->  n  e.  ( ZZ>= ` 
0 ) )
69 elfznn0 12433 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( n  +  1 ) )  ->  k  e.  NN0 )
7069adantl 482 . . . . . . . . . 10  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  k  e.  (
0 ... ( n  + 
1 ) ) )  ->  k  e.  NN0 )
71 simplr 792 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  k  e.  (
0 ... ( n  + 
1 ) ) )  ->  C  e.  NN0 )
7271nn0zd 11480 . . . . . . . . . 10  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  k  e.  (
0 ... ( n  + 
1 ) ) )  ->  C  e.  ZZ )
73 bccl 13109 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  C  e.  ZZ )  ->  ( k  _C  C
)  e.  NN0 )
7470, 72, 73syl2anc 693 . . . . . . . . 9  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  k  e.  (
0 ... ( n  + 
1 ) ) )  ->  ( k  _C  C )  e.  NN0 )
7574nn0cnd 11353 . . . . . . . 8  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  k  e.  (
0 ... ( n  + 
1 ) ) )  ->  ( k  _C  C )  e.  CC )
76 oveq1 6657 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  (
k  _C  C )  =  ( ( n  +  1 )  _C  C ) )
7768, 75, 76fsump1 14487 . . . . . . 7  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  ->  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( k  _C  C )  =  ( sum_ k  e.  ( 0 ... n
) ( k  _C  C )  +  ( ( n  +  1 )  _C  C ) ) )
7877adantr 481 . . . . . 6  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  sum_ k  e.  ( 0 ... n ) ( k  _C  C
)  =  ( ( n  +  1 )  _C  ( C  + 
1 ) ) )  ->  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( k  _C  C
)  =  ( sum_ k  e.  ( 0 ... n ) ( k  _C  C )  +  ( ( n  +  1 )  _C  C ) ) )
79 id 22 . . . . . . 7  |-  ( sum_ k  e.  ( 0 ... n ) ( k  _C  C )  =  ( ( n  +  1 )  _C  ( C  +  1 ) )  ->  sum_ k  e.  ( 0 ... n
) ( k  _C  C )  =  ( ( n  +  1 )  _C  ( C  +  1 ) ) )
80 nn0cn 11302 . . . . . . . . . . 11  |-  ( C  e.  NN0  ->  C  e.  CC )
8180adantl 482 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  ->  C  e.  CC )
82 1cnd 10056 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  -> 
1  e.  CC )
8381, 82pncand 10393 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  -> 
( ( C  + 
1 )  -  1 )  =  C )
8483oveq2d 6666 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  -> 
( ( n  + 
1 )  _C  (
( C  +  1 )  -  1 ) )  =  ( ( n  +  1 )  _C  C ) )
8584eqcomd 2628 . . . . . . 7  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  -> 
( ( n  + 
1 )  _C  C
)  =  ( ( n  +  1 )  _C  ( ( C  +  1 )  - 
1 ) ) )
8679, 85oveqan12rd 6670 . . . . . 6  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  sum_ k  e.  ( 0 ... n ) ( k  _C  C
)  =  ( ( n  +  1 )  _C  ( C  + 
1 ) ) )  ->  ( sum_ k  e.  ( 0 ... n
) ( k  _C  C )  +  ( ( n  +  1 )  _C  C ) )  =  ( ( ( n  +  1 )  _C  ( C  +  1 ) )  +  ( ( n  +  1 )  _C  ( ( C  + 
1 )  -  1 ) ) ) )
87 peano2nn0 11333 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
88 peano2nn0 11333 . . . . . . . . 9  |-  ( C  e.  NN0  ->  ( C  +  1 )  e. 
NN0 )
8988nn0zd 11480 . . . . . . . 8  |-  ( C  e.  NN0  ->  ( C  +  1 )  e.  ZZ )
90 bcpasc 13108 . . . . . . . 8  |-  ( ( ( n  +  1 )  e.  NN0  /\  ( C  +  1
)  e.  ZZ )  ->  ( ( ( n  +  1 )  _C  ( C  + 
1 ) )  +  ( ( n  + 
1 )  _C  (
( C  +  1 )  -  1 ) ) )  =  ( ( ( n  + 
1 )  +  1 )  _C  ( C  +  1 ) ) )
9187, 89, 90syl2an 494 . . . . . . 7  |-  ( ( n  e.  NN0  /\  C  e.  NN0 )  -> 
( ( ( n  +  1 )  _C  ( C  +  1 ) )  +  ( ( n  +  1 )  _C  ( ( C  +  1 )  -  1 ) ) )  =  ( ( ( n  +  1 )  +  1 )  _C  ( C  + 
1 ) ) )
9291adantr 481 . . . . . 6  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  sum_ k  e.  ( 0 ... n ) ( k  _C  C
)  =  ( ( n  +  1 )  _C  ( C  + 
1 ) ) )  ->  ( ( ( n  +  1 )  _C  ( C  + 
1 ) )  +  ( ( n  + 
1 )  _C  (
( C  +  1 )  -  1 ) ) )  =  ( ( ( n  + 
1 )  +  1 )  _C  ( C  +  1 ) ) )
9378, 86, 923eqtrd 2660 . . . . 5  |-  ( ( ( n  e.  NN0  /\  C  e.  NN0 )  /\  sum_ k  e.  ( 0 ... n ) ( k  _C  C
)  =  ( ( n  +  1 )  _C  ( C  + 
1 ) ) )  ->  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( k  _C  C
)  =  ( ( ( n  +  1 )  +  1 )  _C  ( C  + 
1 ) ) )
9493exp31 630 . . . 4  |-  ( n  e.  NN0  ->  ( C  e.  NN0  ->  ( sum_ k  e.  ( 0 ... n ) ( k  _C  C )  =  ( ( n  +  1 )  _C  ( C  +  1 ) )  ->  sum_ k  e.  ( 0 ... (
n  +  1 ) ) ( k  _C  C )  =  ( ( ( n  + 
1 )  +  1 )  _C  ( C  +  1 ) ) ) ) )
9594a2d 29 . . 3  |-  ( n  e.  NN0  ->  ( ( C  e.  NN0  ->  sum_ k  e.  ( 0 ... n ) ( k  _C  C )  =  ( ( n  +  1 )  _C  ( C  +  1 ) ) )  -> 
( C  e.  NN0  -> 
sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( k  _C  C
)  =  ( ( ( n  +  1 )  +  1 )  _C  ( C  + 
1 ) ) ) ) )
968, 14, 20, 26, 65, 95nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( C  e.  NN0  ->  sum_ k  e.  ( 0 ... N
) ( k  _C  C )  =  ( ( N  +  1 )  _C  ( C  +  1 ) ) ) )
9796imp 445 1  |-  ( ( N  e.  NN0  /\  C  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( k  _C  C )  =  ( ( N  +  1 )  _C  ( C  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   !cfa 13060    _C cbc 13089   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator