Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Visualization version   Unicode version

Theorem irrapxlem4 37389
Description: Lemma for irrapx1 37392. Eliminate ranges, use positivity of the input to force positivity of the output by increasing  B as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem4
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 12370 . . . 4  |-  ( a  e.  ( 1 ...
if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )  -> 
a  e.  NN )
21ad3antlr 767 . . 3  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  a  e.  NN )
3 nn0z 11400 . . . . 5  |-  ( b  e.  NN0  ->  b  e.  ZZ )
43ad2antlr 763 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  b  e.  ZZ )
5 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  A  e.  RR+ )
65ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  e.  RR+ )
76rpred 11872 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  e.  RR )
82nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  a  e.  RR )
97, 8remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  a )  e.  RR )
10 nn0re 11301 . . . . . . . . . . . 12  |-  ( b  e.  NN0  ->  b  e.  RR )
1110ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  b  e.  RR )
129, 11resubcld 10458 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  b )  e.  RR )
1312recnd 10068 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  b )  e.  CC )
1413abscld 14175 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  e.  RR )
155rpreccld 11882 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
1  /  A )  e.  RR+ )
1615rprege0d 11879 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
( 1  /  A
)  e.  RR  /\  0  <_  ( 1  /  A ) ) )
17 flge0nn0 12621 . . . . . . . . . . . 12  |-  ( ( ( 1  /  A
)  e.  RR  /\  0  <_  ( 1  /  A ) )  -> 
( |_ `  (
1  /  A ) )  e.  NN0 )
18 nn0p1nn 11332 . . . . . . . . . . . 12  |-  ( ( |_ `  ( 1  /  A ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  A ) )  +  1 )  e.  NN )
1916, 17, 183syl 18 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  NN )
2019ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  NN )
21 simpr 477 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  B  e.  NN )
2221ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  e.  NN )
2320, 22ifcld 4131 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  NN )
2423nnrecred 11066 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  e.  RR )
25 0red 10041 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  e.  RR )
269, 25resubcld 10458 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  0 )  e.  RR )
27 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )
2820nnrecred 11066 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) )  e.  RR )
2922nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  e.  RR )
306rprecred 11883 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  A )  e.  RR )
3130flcld 12599 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( |_ `  ( 1  /  A ) )  e.  ZZ )
3231zred 11482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( |_ `  ( 1  /  A ) )  e.  RR )
33 peano2re 10209 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( 1  /  A ) )  e.  RR  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  RR )
3432, 33syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  RR )
35 max2 12018 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( ( |_ `  ( 1  /  A
) )  +  1 )  e.  RR )  ->  ( ( |_
`  ( 1  /  A ) )  +  1 )  <_  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) )
3629, 34, 35syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )
3720nngt0d 11064 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  ( ( |_ `  ( 1  /  A
) )  +  1 ) )
3823nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  RR )
3923nngt0d 11064 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )
40 lerec 10906 . . . . . . . . . . . 12  |-  ( ( ( ( ( |_
`  ( 1  /  A ) )  +  1 )  e.  RR  /\  0  <  ( ( |_ `  ( 1  /  A ) )  +  1 ) )  /\  ( if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  e.  RR  /\  0  < 
if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) ) )  ->  ( ( ( |_ `  ( 1  /  A ) )  +  1 )  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
)  <->  ( 1  /  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
) )  <_  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) ) ) )
4134, 37, 38, 39, 40syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( ( |_ `  ( 1  /  A
) )  +  1 )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) ) ) )
4236, 41mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) ) )
43 fllep1 12602 . . . . . . . . . . . . 13  |-  ( ( 1  /  A )  e.  RR  ->  (
1  /  A )  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) )
4430, 43syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  A )  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) )
4520nncnd 11036 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  CC )
4620nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  =/=  0 )
4745, 46recrecd 10798 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  ( 1  /  ( ( |_
`  ( 1  /  A ) )  +  1 ) ) )  =  ( ( |_
`  ( 1  /  A ) )  +  1 ) )
4844, 47breqtrrd 4681 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  A )  <_  ( 1  / 
( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) ) ) )
4934, 37recgt0d 10958 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  ( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) ) )
506rpgt0d 11875 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  A )
51 lerec 10906 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) )  e.  RR  /\  0  <  ( 1  /  ( ( |_
`  ( 1  /  A ) )  +  1 ) ) )  /\  ( A  e.  RR  /\  0  < 
A ) )  -> 
( ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) )  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) ) ) ) )
5228, 49, 7, 50, 51syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) )  <_  A  <->  ( 1  /  A )  <_ 
( 1  /  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) ) ) ) )
5348, 52mpbird 247 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) )  <_  A )
5424, 28, 7, 42, 53letrd 10194 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  A )
557recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  e.  CC )
5655mulid1d 10057 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  1 )  =  A )
572nnge1d 11063 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  1  <_  a )
58 1red 10055 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  1  e.  RR )
5958, 8, 6lemul2d 11916 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  <_  a  <->  ( A  x.  1 )  <_  ( A  x.  a )
) )
6057, 59mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  1 )  <_  ( A  x.  a ) )
6156, 60eqbrtrrd 4677 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  <_  ( A  x.  a
) )
629recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  a )  e.  CC )
6362subid1d 10381 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  0 )  =  ( A  x.  a ) )
6461, 63breqtrrd 4681 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  <_  ( ( A  x.  a )  -  0 ) )
6524, 7, 26, 54, 64letrd 10194 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( ( A  x.  a )  - 
0 ) )
6614, 24, 26, 27, 65ltletrd 10197 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( ( A  x.  a )  -  0 ) )
6712, 26absltd 14168 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( abs `  (
( A  x.  a
)  -  b ) )  <  ( ( A  x.  a )  -  0 )  <->  ( -u (
( A  x.  a
)  -  0 )  <  ( ( A  x.  a )  -  b )  /\  (
( A  x.  a
)  -  b )  <  ( ( A  x.  a )  - 
0 ) ) ) )
6866, 67mpbid 222 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( -u ( ( A  x.  a )  -  0 )  <  ( ( A  x.  a )  -  b )  /\  ( ( A  x.  a )  -  b
)  <  ( ( A  x.  a )  -  0 ) ) )
6968simprd 479 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  b )  <  ( ( A  x.  a )  - 
0 ) )
7025, 11, 9ltsub2d 10637 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
0  <  b  <->  ( ( A  x.  a )  -  b )  < 
( ( A  x.  a )  -  0 ) ) )
7169, 70mpbird 247 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  b )
72 elnnz 11387 . . . 4  |-  ( b  e.  NN  <->  ( b  e.  ZZ  /\  0  < 
b ) )
734, 71, 72sylanbrc 698 . . 3  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  b  e.  NN )
7422, 2ifcld 4131 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( a  <_  B ,  B ,  a )  e.  NN )
7574nnrecred 11066 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( a  <_  B ,  B ,  a )
)  e.  RR )
76 elfzle2 12345 . . . . . . 7  |-  ( a  e.  ( 1 ...
if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )  -> 
a  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )
7776ad3antlr 767 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  a  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )
78 max1 12016 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( ( |_ `  ( 1  /  A
) )  +  1 )  e.  RR )  ->  B  <_  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) )
7929, 34, 78syl2anc 693 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )
80 maxle 12022 . . . . . . 7  |-  ( ( a  e.  RR  /\  B  e.  RR  /\  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  RR )  -> 
( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
)  <->  ( a  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
)  /\  B  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
) ) ) )
818, 29, 38, 80syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( a  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B )  /\  B  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) ) ) )
8277, 79, 81mpbir2and 957 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )
8329, 8ifcld 4131 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( a  <_  B ,  B ,  a )  e.  RR )
8422nngt0d 11064 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  B )
85 max2 12018 . . . . . . . 8  |-  ( ( a  e.  RR  /\  B  e.  RR )  ->  B  <_  if (
a  <_  B ,  B ,  a )
)
868, 29, 85syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  <_  if ( a  <_  B ,  B , 
a ) )
8725, 29, 83, 84, 86ltletrd 10197 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  if ( a  <_  B ,  B , 
a ) )
88 lerec 10906 . . . . . 6  |-  ( ( ( if ( a  <_  B ,  B ,  a )  e.  RR  /\  0  < 
if ( a  <_  B ,  B , 
a ) )  /\  ( if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B )  e.  RR  /\  0  <  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) ) )  ->  ( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  /  if ( a  <_  B ,  B ,  a ) ) ) )
8983, 87, 38, 39, 88syl22anc 1327 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  /  if ( a  <_  B ,  B ,  a ) ) ) )
9082, 89mpbid 222 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  /  if ( a  <_  B ,  B ,  a ) ) )
9114, 24, 75, 27, 90ltletrd 10197 . . 3  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  B ,  B ,  a ) ) )
92 oveq2 6658 . . . . . . 7  |-  ( x  =  a  ->  ( A  x.  x )  =  ( A  x.  a ) )
9392oveq1d 6665 . . . . . 6  |-  ( x  =  a  ->  (
( A  x.  x
)  -  y )  =  ( ( A  x.  a )  -  y ) )
9493fveq2d 6195 . . . . 5  |-  ( x  =  a  ->  ( abs `  ( ( A  x.  x )  -  y ) )  =  ( abs `  (
( A  x.  a
)  -  y ) ) )
95 breq1 4656 . . . . . . 7  |-  ( x  =  a  ->  (
x  <_  B  <->  a  <_  B ) )
96 id 22 . . . . . . 7  |-  ( x  =  a  ->  x  =  a )
9795, 96ifbieq2d 4111 . . . . . 6  |-  ( x  =  a  ->  if ( x  <_  B ,  B ,  x )  =  if ( a  <_  B ,  B , 
a ) )
9897oveq2d 6666 . . . . 5  |-  ( x  =  a  ->  (
1  /  if ( x  <_  B ,  B ,  x )
)  =  ( 1  /  if ( a  <_  B ,  B ,  a ) ) )
9994, 98breq12d 4666 . . . 4  |-  ( x  =  a  ->  (
( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) )  <->  ( abs `  ( ( A  x.  a )  -  y
) )  <  (
1  /  if ( a  <_  B ,  B ,  a )
) ) )
100 oveq2 6658 . . . . . 6  |-  ( y  =  b  ->  (
( A  x.  a
)  -  y )  =  ( ( A  x.  a )  -  b ) )
101100fveq2d 6195 . . . . 5  |-  ( y  =  b  ->  ( abs `  ( ( A  x.  a )  -  y ) )  =  ( abs `  (
( A  x.  a
)  -  b ) ) )
102101breq1d 4663 . . . 4  |-  ( y  =  b  ->  (
( abs `  (
( A  x.  a
)  -  y ) )  <  ( 1  /  if ( a  <_  B ,  B ,  a ) )  <-> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  B ,  B ,  a ) ) ) )
10399, 102rspc2ev 3324 . . 3  |-  ( ( a  e.  NN  /\  b  e.  NN  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  B ,  B ,  a ) ) )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
1042, 73, 91, 103syl3anc 1326 . 2  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
10519, 21ifcld 4131 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  NN )
106 irrapxlem3 37388 . . 3  |-  ( ( A  e.  RR+  /\  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  NN )  ->  E. a  e.  (
1 ... if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) ) E. b  e.  NN0  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
) ) )
1075, 105, 106syl2anc 693 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) E. b  e. 
NN0  ( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) ) )
108104, 107r19.29vva 3081 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   E.wrex 2913   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832   ...cfz 12326   |_cfl 12591   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  irrapxlem5  37390
  Copyright terms: Public domain W3C validator