MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Visualization version   Unicode version

Theorem isercolllem2 14396
Description: Lemma for isercoll 14398. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Distinct variable groups:    k, N    ph, k    k, G    k, M
Allowed substitution hint:    Z( k)

Proof of Theorem isercolllem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 12370 . . . . . . . 8  |-  ( x  e.  ( 1 ...
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  x  e.  NN )
21a1i 11 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  ->  x  e.  NN )
)
3 cnvimass 5485 . . . . . . . . 9  |-  ( `' G " ( M ... N ) ) 
C_  dom  G
4 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
54adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
--> Z )
6 fdm 6051 . . . . . . . . . 10  |-  ( G : NN --> Z  ->  dom  G  =  NN )
75, 6syl 17 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  dom  G  =  NN )
83, 7syl5sseq 3653 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  NN )
98sseld 3602 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  e.  NN ) )
10 id 22 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN )
11 nnuz 11723 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2711 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
13 ltso 10118 . . . . . . . . . . . . . 14  |-  <  Or  RR
1413a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  <  Or  RR )
15 fzfid 12772 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( M ... N )  e.  Fin )
16 ffun 6048 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  Fun  G )
17 funimacnv 5970 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
185, 16, 173syl 18 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
19 inss1 3833 . . . . . . . . . . . . . . . 16  |-  ( ( M ... N )  i^i  ran  G )  C_  ( M ... N
)
2018, 19syl6eqss 3655 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  C_  ( M ... N ) )
21 ssfi 8180 . . . . . . . . . . . . . . 15  |-  ( ( ( M ... N
)  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  C_  ( M ... N ) )  -> 
( G " ( `' G " ( M ... N ) ) )  e.  Fin )
2215, 20, 21syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  e. 
Fin )
23 ssid 3624 . . . . . . . . . . . . . . . . . . . . 21  |-  NN  C_  NN
24 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22  |-  Z  =  ( ZZ>= `  M )
25 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  ZZ )
26 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
2724, 25, 4, 26isercolllem1 14395 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  NN  C_  NN )  ->  ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
2823, 27mpan2 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G  |`  NN ) 
Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
29 ffn 6045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G : NN --> Z  ->  G  Fn  NN )
30 fnresdm 6000 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G  Fn  NN  ->  ( G  |`  NN )  =  G )
31 isoeq1 6567 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  |`  NN )  =  G  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) ) )
324, 29, 30, 314syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) ) )
3328, 32mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  G  Isom  <  ,  <  ( NN ,  ( G
" NN ) ) )
34 isof1o 6573 . . . . . . . . . . . . . . . . . . 19  |-  ( G 
Isom  <  ,  <  ( NN ,  ( G " NN ) )  ->  G : NN -1-1-onto-> ( G " NN ) )
35 f1ocnv 6149 . . . . . . . . . . . . . . . . . . 19  |-  ( G : NN -1-1-onto-> ( G " NN )  ->  `' G :
( G " NN )
-1-1-onto-> NN )
36 f1ofun 6139 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G : ( G
" NN ) -1-1-onto-> NN  ->  Fun  `' G )
3733, 34, 35, 364syl 19 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  `' G )
38 df-f1 5893 . . . . . . . . . . . . . . . . . 18  |-  ( G : NN -1-1-> Z  <->  ( G : NN --> Z  /\  Fun  `' G ) )
394, 37, 38sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : NN -1-1-> Z
)
4039adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
-1-1-> Z )
41 nnex 11026 . . . . . . . . . . . . . . . . 17  |-  NN  e.  _V
42 ssexg 4804 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' G "
( M ... N
) )  C_  NN  /\  NN  e.  _V )  ->  ( `' G "
( M ... N
) )  e.  _V )
438, 41, 42sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
_V )
44 f1imaeng 8016 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN -1-1-> Z  /\  ( `' G "
( M ... N
) )  C_  NN  /\  ( `' G "
( M ... N
) )  e.  _V )  ->  ( G "
( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4540, 8, 43, 44syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4645ensymd 8007 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) )
47 enfii 8177 . . . . . . . . . . . . . 14  |-  ( ( ( G " ( `' G " ( M ... N ) ) )  e.  Fin  /\  ( `' G " ( M ... N ) ) 
~~  ( G "
( `' G "
( M ... N
) ) ) )  ->  ( `' G " ( M ... N
) )  e.  Fin )
4822, 46, 47syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
Fin )
49 1nn 11031 . . . . . . . . . . . . . . . 16  |-  1  e.  NN
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  NN )
51 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
524, 49, 51sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G `  1
)  e.  Z )
5352, 24syl6eleq 2711 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
5453adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( ZZ>= `  M )
)
55 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  N  e.  ( ZZ>= `  ( G `  1 ) ) )
56 elfzuzb 12336 . . . . . . . . . . . . . . . 16  |-  ( ( G `  1 )  e.  ( M ... N )  <->  ( ( G `  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  ( G ` 
1 ) ) ) )
5754, 55, 56sylanbrc 698 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( M ... N
) )
585, 29syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G  Fn  NN )
59 elpreima 6337 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  NN  ->  (
1  e.  ( `' G " ( M ... N ) )  <-> 
( 1  e.  NN  /\  ( G `  1
)  e.  ( M ... N ) ) ) )
6058, 59syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1  e.  ( `' G " ( M ... N
) )  <->  ( 1  e.  NN  /\  ( G `  1 )  e.  ( M ... N
) ) ) )
6150, 57, 60mpbir2and 957 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  ( `' G " ( M ... N ) ) )
62 ne0i 3921 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( `' G " ( M ... N
) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
6361, 62syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
64 nnssre 11024 . . . . . . . . . . . . . 14  |-  NN  C_  RR
658, 64syl6ss 3615 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  RR )
66 fisupcl 8375 . . . . . . . . . . . . 13  |-  ( (  <  Or  RR  /\  ( ( `' G " ( M ... N
) )  e.  Fin  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  ( `' G " ( M ... N ) ) 
C_  RR ) )  ->  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N
) ) )
6714, 48, 63, 65, 66syl13anc 1328 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) ) )
688, 67sseldd 3604 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN )
6968nnzd 11481 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ZZ )
70 elfz5 12334 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ZZ )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
7112, 69, 70syl2anr 495 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) ) )
72 elpreima 6337 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  NN  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7358, 72syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7467, 73mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
) ) )
7574simprd 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) )
76 elfzle2 12345 . . . . . . . . . . . . . . 15  |-  ( ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
)  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7775, 76syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7877adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
79 uzssz 11707 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  M )  C_  ZZ
8024, 79eqsstri 3635 . . . . . . . . . . . . . . . 16  |-  Z  C_  ZZ
81 zssre 11384 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8280, 81sstri 3612 . . . . . . . . . . . . . . 15  |-  Z  C_  RR
835ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  Z )
8482, 83sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  RR )
855, 68ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8685adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8782, 86sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  RR )
88 eluzelz 11697 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  ( G `  1 )
)  ->  N  e.  ZZ )
8988ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  ZZ )
9081, 89sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  RR )
91 letr 10131 . . . . . . . . . . . . . 14  |-  ( ( ( G `  x
)  e.  RR  /\  ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  RR  /\  N  e.  RR )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9284, 87, 90, 91syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9378, 92mpan2d 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  ( G `  x )  <_  N
) )
9433ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
9564a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_  RR )
96 ressxr 10083 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
9795, 96syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_ 
RR* )
98 imassrn 5477 . . . . . . . . . . . . . . . 16  |-  ( G
" NN )  C_  ran  G
994ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G : NN --> Z )
100 frn 6053 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  ran  G  C_  Z )
10199, 100syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  Z )
10298, 101syl5ss 3614 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  Z )
103102, 82syl6ss 3615 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR )
104103, 96syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR* )
105 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  x  e.  NN )
10668adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN )
107 leisorel 13244 . . . . . . . . . . . . 13  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( NN  C_  RR* 
/\  ( G " NN )  C_  RR* )  /\  ( x  e.  NN  /\ 
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN ) )  ->  ( x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10894, 97, 104, 105, 106, 107syl122anc 1335 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10983, 24syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  ( ZZ>= `  M )
)
110 elfz5 12334 . . . . . . . . . . . . 13  |-  ( ( ( G `  x
)  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
111109, 89, 110syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
11293, 108, 1113imtr4d 283 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  ( G `  x )  e.  ( M ... N
) ) )
113 elpreima 6337 . . . . . . . . . . . . 13  |-  ( G  Fn  NN  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( x  e.  NN  /\  ( G `  x
)  e.  ( M ... N ) ) ) )
114113baibd 948 . . . . . . . . . . . 12  |-  ( ( G  Fn  NN  /\  x  e.  NN )  ->  ( x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
11558, 114sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
116112, 115sylibrd 249 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  x  e.  ( `' G "
( M ... N
) ) ) )
117 fimaxre2 10969 . . . . . . . . . . . . 13  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  e.  Fin )  ->  E. x  e.  RR  A. y  e.  ( `' G " ( M ... N ) ) y  <_  x )
11865, 48, 117syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )
119 suprub 10984 . . . . . . . . . . . . 13  |-  ( ( ( ( `' G " ( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  /\  x  e.  ( `' G "
( M ... N
) ) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )
120119ex 450 . . . . . . . . . . . 12  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
12165, 63, 118, 120syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )
122121adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
123116, 122impbid 202 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
12471, 123bitrd 268 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
125124ex 450 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  NN  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) ) )
1262, 9, 125pm5.21ndd 369 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
127126eqrdv 2620 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( `' G " ( M ... N ) ) )
128127fveq2d 6195 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  (
# `  ( `' G " ( M ... N ) ) ) )
12968nnnn0d 11351 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN0 )
130 hashfz1 13134 . . . . 5  |-  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN0  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
131129, 130syl 17 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
132 hashen 13135 . . . . . 6  |-  ( ( ( `' G "
( M ... N
) )  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  e.  Fin )  ->  ( ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) )  <->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) ) )
13348, 22, 132syl2anc 693 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( # `
 ( `' G " ( M ... N
) ) )  =  ( # `  ( G " ( `' G " ( M ... N
) ) ) )  <-> 
( `' G "
( M ... N
) )  ~~  ( G " ( `' G " ( M ... N
) ) ) ) )
13446, 133mpbird 247 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) ) )
135128, 131, 1343eqtr3d 2664 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  =  (
# `  ( G " ( `' G "
( M ... N
) ) ) ) )
136135oveq2d 6666 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) )
137136, 127eqtr3d 2658 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  isercolllem3  14397
  Copyright terms: Public domain W3C validator