MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll Structured version   Visualization version   Unicode version

Theorem isercoll 14398
Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
isercoll.0  |-  ( (
ph  /\  n  e.  ( Z  \  ran  G
) )  ->  ( F `  n )  =  0 )
isercoll.f  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  CC )
isercoll.h  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( F `  ( G `  k )
) )
Assertion
Ref Expression
isercoll  |-  ( ph  ->  (  seq 1 (  +  ,  H )  ~~>  A  <->  seq M (  +  ,  F )  ~~>  A ) )
Distinct variable groups:    k, n, A    k, F, n    ph, k, n    k, G, n    k, H, n    k, M, n   
n, Z
Allowed substitution hint:    Z( k)

Proof of Theorem isercoll
Dummy variables  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
2 uzssz 11707 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3635 . . . . . . . . 9  |-  Z  C_  ZZ
4 isercoll.g . . . . . . . . . 10  |-  ( ph  ->  G : NN --> Z )
54ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  Z )
63, 5sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  ZZ )
7 nnz 11399 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  ZZ )
87ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  n  e.  ZZ )
9 fzfid 12772 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( M ... m )  e.  Fin )
10 ffun 6048 . . . . . . . . . . . . . . . 16  |-  ( G : NN --> Z  ->  Fun  G )
11 funimacnv 5970 . . . . . . . . . . . . . . . 16  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... m
) ) )  =  ( ( M ... m )  i^i  ran  G ) )
124, 10, 113syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G " ( `' G " ( M ... m ) ) )  =  ( ( M ... m )  i^i  ran  G )
)
13 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( ( M ... m )  i^i  ran  G )  C_  ( M ... m
)
1412, 13syl6eqss 3655 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( G " ( `' G " ( M ... m ) ) )  C_  ( M ... m ) )
1514ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( G "
( `' G "
( M ... m
) ) )  C_  ( M ... m ) )
16 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( ( M ... m
)  e.  Fin  /\  ( G " ( `' G " ( M ... m ) ) )  C_  ( M ... m ) )  -> 
( G " ( `' G " ( M ... m ) ) )  e.  Fin )
179, 15, 16syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( G "
( `' G "
( M ... m
) ) )  e. 
Fin )
18 hashcl 13147 . . . . . . . . . . . 12  |-  ( ( G " ( `' G " ( M ... m ) ) )  e.  Fin  ->  (
# `  ( G " ( `' G "
( M ... m
) ) ) )  e.  NN0 )
19 nn0z 11400 . . . . . . . . . . . 12  |-  ( (
# `  ( G " ( `' G "
( M ... m
) ) ) )  e.  NN0  ->  ( # `  ( G " ( `' G " ( M ... m ) ) ) )  e.  ZZ )
2017, 18, 193syl 18 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  e.  ZZ )
21 ssid 3624 . . . . . . . . . . . . . . . . . . . 20  |-  NN  C_  NN
22 isercoll.m . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  e.  ZZ )
23 isercoll.i . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
241, 22, 4, 23isercolllem1 14395 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  NN  C_  NN )  ->  ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
2521, 24mpan2 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( G  |`  NN ) 
Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
26 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : NN --> Z  ->  G  Fn  NN )
27 fnresdm 6000 . . . . . . . . . . . . . . . . . . . 20  |-  ( G  Fn  NN  ->  ( G  |`  NN )  =  G )
28 isoeq1 6567 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  |`  NN )  =  G  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) ) )
294, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) ) )
3025, 29mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  Isom  <  ,  <  ( NN ,  ( G
" NN ) ) )
31 isof1o 6573 . . . . . . . . . . . . . . . . . 18  |-  ( G 
Isom  <  ,  <  ( NN ,  ( G " NN ) )  ->  G : NN -1-1-onto-> ( G " NN ) )
32 f1ocnv 6149 . . . . . . . . . . . . . . . . . 18  |-  ( G : NN -1-1-onto-> ( G " NN )  ->  `' G :
( G " NN )
-1-1-onto-> NN )
33 f1ofun 6139 . . . . . . . . . . . . . . . . . 18  |-  ( `' G : ( G
" NN ) -1-1-onto-> NN  ->  Fun  `' G )
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Fun  `' G )
35 df-f1 5893 . . . . . . . . . . . . . . . . 17  |-  ( G : NN -1-1-> Z  <->  ( G : NN --> Z  /\  Fun  `' G ) )
364, 34, 35sylanbrc 698 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : NN -1-1-> Z
)
3736ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  G : NN -1-1-> Z )
38 elfznn 12370 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 1 ... n )  ->  y  e.  NN )
3938ssriv 3607 . . . . . . . . . . . . . . 15  |-  ( 1 ... n )  C_  NN
40 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( 1 ... n )  e. 
_V
4140f1imaen 8018 . . . . . . . . . . . . . . 15  |-  ( ( G : NN -1-1-> Z  /\  ( 1 ... n
)  C_  NN )  ->  ( G " (
1 ... n ) ) 
~~  ( 1 ... n ) )
4237, 39, 41sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( G "
( 1 ... n
) )  ~~  (
1 ... n ) )
43 fzfid 12772 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( 1 ... n )  e.  Fin )
44 enfii 8177 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... n
)  e.  Fin  /\  ( G " ( 1 ... n ) ) 
~~  ( 1 ... n ) )  -> 
( G " (
1 ... n ) )  e.  Fin )
4543, 42, 44syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( G "
( 1 ... n
) )  e.  Fin )
46 hashen 13135 . . . . . . . . . . . . . . 15  |-  ( ( ( G " (
1 ... n ) )  e.  Fin  /\  (
1 ... n )  e. 
Fin )  ->  (
( # `  ( G
" ( 1 ... n ) ) )  =  ( # `  (
1 ... n ) )  <-> 
( G " (
1 ... n ) ) 
~~  ( 1 ... n ) ) )
4745, 43, 46syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( ( # `  ( G " (
1 ... n ) ) )  =  ( # `  ( 1 ... n
) )  <->  ( G " ( 1 ... n
) )  ~~  (
1 ... n ) ) )
4842, 47mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( # `  ( G " ( 1 ... n ) ) )  =  ( # `  (
1 ... n ) ) )
49 nnnn0 11299 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  NN0 )
5049ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  n  e.  NN0 )
51 hashfz1 13134 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
5250, 51syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( # `  (
1 ... n ) )  =  n )
5348, 52eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( # `  ( G " ( 1 ... n ) ) )  =  n )
5438adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  y  e.  NN )
55 zssre 11384 . . . . . . . . . . . . . . . . . . . . . 22  |-  ZZ  C_  RR
563, 55sstri 3612 . . . . . . . . . . . . . . . . . . . . 21  |-  Z  C_  RR
574ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  G : NN --> Z )
58 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G : NN --> Z  /\  y  e.  NN )  ->  ( G `  y
)  e.  Z )
5957, 38, 58syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  y )  e.  Z
)
6056, 59sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  y )  e.  RR )
615ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  n )  e.  Z
)
6256, 61sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  n )  e.  RR )
63 eluzelz 11697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( ZZ>= `  ( G `  n )
)  ->  m  e.  ZZ )
6463ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  m  e.  ZZ )
6564zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  m  e.  RR )
66 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 1 ... n )  ->  y  <_  n )
6766adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  y  <_  n )
6830ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) )
69 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  n  e.  NN )
70 isorel 6576 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( n  e.  NN  /\  y  e.  NN ) )  -> 
( n  <  y  <->  ( G `  n )  <  ( G `  y ) ) )
7168, 69, 54, 70syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( n  <  y  <->  ( G `  n )  <  ( G `  y )
) )
7271notbid 308 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( -.  n  <  y  <->  -.  ( G `  n )  <  ( G `  y
) ) )
7354nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  y  e.  RR )
7469nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  n  e.  RR )
7573, 74lenltd 10183 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( y  <_  n  <->  -.  n  <  y ) )
7660, 62lenltd 10183 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( ( G `  y )  <_  ( G `  n
)  <->  -.  ( G `  n )  <  ( G `  y )
) )
7772, 75, 763bitr4d 300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( y  <_  n  <->  ( G `  y )  <_  ( G `  n )
) )
7867, 77mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  y )  <_  ( G `  n )
)
79 eluzle 11700 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( ZZ>= `  ( G `  n )
)  ->  ( G `  n )  <_  m
)
8079ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  n )  <_  m
)
8160, 62, 65, 78, 80letrd 10194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  y )  <_  m
)
8259, 1syl6eleq 2711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  y )  e.  (
ZZ>= `  M ) )
83 elfz5 12334 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G `  y
)  e.  ( ZZ>= `  M )  /\  m  e.  ZZ )  ->  (
( G `  y
)  e.  ( M ... m )  <->  ( G `  y )  <_  m
) )
8482, 64, 83syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( ( G `  y )  e.  ( M ... m
)  <->  ( G `  y )  <_  m
) )
8581, 84mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( G `  y )  e.  ( M ... m ) )
8657, 26syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  G  Fn  NN )
8786adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  G  Fn  NN )
88 elpreima 6337 . . . . . . . . . . . . . . . . . . 19  |-  ( G  Fn  NN  ->  (
y  e.  ( `' G " ( M ... m ) )  <-> 
( y  e.  NN  /\  ( G `  y
)  e.  ( M ... m ) ) ) )
8987, 88syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  ( y  e.  ( `' G "
( M ... m
) )  <->  ( y  e.  NN  /\  ( G `
 y )  e.  ( M ... m
) ) ) )
9054, 85, 89mpbir2and 957 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>=
`  ( G `  n ) ) )  /\  y  e.  ( 1 ... n ) )  ->  y  e.  ( `' G " ( M ... m ) ) )
9190ex 450 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( y  e.  ( 1 ... n
)  ->  y  e.  ( `' G " ( M ... m ) ) ) )
9291ssrdv 3609 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( 1 ... n )  C_  ( `' G " ( M ... m ) ) )
93 imass2 5501 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... n ) 
C_  ( `' G " ( M ... m
) )  ->  ( G " ( 1 ... n ) )  C_  ( G " ( `' G " ( M ... m ) ) ) )
9492, 93syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( G "
( 1 ... n
) )  C_  ( G " ( `' G " ( M ... m
) ) ) )
95 ssdomg 8001 . . . . . . . . . . . . . 14  |-  ( ( G " ( `' G " ( M ... m ) ) )  e.  Fin  ->  ( ( G " (
1 ... n ) ) 
C_  ( G "
( `' G "
( M ... m
) ) )  -> 
( G " (
1 ... n ) )  ~<_  ( G " ( `' G " ( M ... m ) ) ) ) )
9617, 94, 95sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( G "
( 1 ... n
) )  ~<_  ( G
" ( `' G " ( M ... m
) ) ) )
97 hashdom 13168 . . . . . . . . . . . . . 14  |-  ( ( ( G " (
1 ... n ) )  e.  Fin  /\  ( G " ( `' G " ( M ... m
) ) )  e. 
Fin )  ->  (
( # `  ( G
" ( 1 ... n ) ) )  <_  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  <-> 
( G " (
1 ... n ) )  ~<_  ( G " ( `' G " ( M ... m ) ) ) ) )
9845, 17, 97syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( ( # `  ( G " (
1 ... n ) ) )  <_  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  <-> 
( G " (
1 ... n ) )  ~<_  ( G " ( `' G " ( M ... m ) ) ) ) )
9996, 98mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( # `  ( G " ( 1 ... n ) ) )  <_  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )
10053, 99eqbrtrrd 4677 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  n  <_  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )
101 eluz2 11693 . . . . . . . . . . 11  |-  ( (
# `  ( G " ( `' G "
( M ... m
) ) ) )  e.  ( ZZ>= `  n
)  <->  ( n  e.  ZZ  /\  ( # `  ( G " ( `' G " ( M ... m ) ) ) )  e.  ZZ  /\  n  <_  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) ) )
1028, 20, 100, 101syl3anbrc 1246 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  e.  ( ZZ>= `  n
) )
103 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  ->  (  seq 1
(  +  ,  H
) `  k )  =  (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) ) )
104103eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  ->  ( (  seq 1 (  +  ,  H ) `  k
)  e.  CC  <->  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  e.  CC ) )
105103oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( k  =  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  ->  ( (  seq 1 (  +  ,  H ) `  k
)  -  A )  =  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  -  A ) )
106105fveq2d 6195 . . . . . . . . . . . . 13  |-  ( k  =  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  =  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) ) )
107106breq1d 4663 . . . . . . . . . . . 12  |-  ( k  =  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  ->  ( ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x  <->  ( abs `  (
(  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) )
108104, 107anbi12d 747 . . . . . . . . . . 11  |-  ( k  =  ( # `  ( G " ( `' G " ( M ... m
) ) ) )  ->  ( ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
)  <->  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
109108rspcv 3305 . . . . . . . . . 10  |-  ( (
# `  ( G " ( `' G "
( M ... m
) ) ) )  e.  ( ZZ>= `  n
)  ->  ( A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
)  ->  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
110102, 109syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  m  e.  ( ZZ>= `  ( G `  n ) ) )  ->  ( A. k  e.  ( ZZ>= `  n )
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x )  ->  (
(  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
111110ralrimdva 2969 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
)  ->  A. m  e.  ( ZZ>= `  ( G `  n ) ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
112 fveq2 6191 . . . . . . . . . 10  |-  ( j  =  ( G `  n )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( G `  n ) ) )
113112raleqdv 3144 . . . . . . . . 9  |-  ( j  =  ( G `  n )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  <->  A. m  e.  ( ZZ>=
`  ( G `  n ) ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
114113rspcev 3309 . . . . . . . 8  |-  ( ( ( G `  n
)  e.  ZZ  /\  A. m  e.  ( ZZ>= `  ( G `  n ) ) ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) )  ->  E. j  e.  ZZ  A. m  e.  ( ZZ>= `  j )
( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) )
1156, 111, 114syl6an 568 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
)  ->  E. j  e.  ZZ  A. m  e.  ( ZZ>= `  j )
( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
116115rexlimdva 3031 . . . . . 6  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x )  ->  E. j  e.  ZZ  A. m  e.  ( ZZ>= `  j )
( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
117 1nn 11031 . . . . . . . . 9  |-  1  e.  NN
118 ffvelrn 6357 . . . . . . . . 9  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
1194, 117, 118sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( G `  1
)  e.  Z )
120119, 1syl6eleq 2711 . . . . . . 7  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
121 eluzelz 11697 . . . . . . 7  |-  ( ( G `  1 )  e.  ( ZZ>= `  M
)  ->  ( G `  1 )  e.  ZZ )
122 eqid 2622 . . . . . . . 8  |-  ( ZZ>= `  ( G `  1 ) )  =  ( ZZ>= `  ( G `  1 ) )
123122rexuz3 14088 . . . . . . 7  |-  ( ( G `  1 )  e.  ZZ  ->  ( E. j  e.  ( ZZ>=
`  ( G ` 
1 ) ) A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
124120, 121, 1233syl 18 . . . . . 6  |-  ( ph  ->  ( E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  (
ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
125116, 124sylibrd 249 . . . . 5  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x )  ->  E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  (
ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
126 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( M ... j )  e.  Fin )
127 funimacnv 5970 . . . . . . . . . . . 12  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... j
) ) )  =  ( ( M ... j )  i^i  ran  G ) )
1284, 10, 1273syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( G " ( `' G " ( M ... j ) ) )  =  ( ( M ... j )  i^i  ran  G )
)
129 inss1 3833 . . . . . . . . . . 11  |-  ( ( M ... j )  i^i  ran  G )  C_  ( M ... j
)
130128, 129syl6eqss 3655 . . . . . . . . . 10  |-  ( ph  ->  ( G " ( `' G " ( M ... j ) ) )  C_  ( M ... j ) )
131130adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... j
) ) )  C_  ( M ... j ) )
132 ssfi 8180 . . . . . . . . 9  |-  ( ( ( M ... j
)  e.  Fin  /\  ( G " ( `' G " ( M ... j ) ) )  C_  ( M ... j ) )  -> 
( G " ( `' G " ( M ... j ) ) )  e.  Fin )
133126, 131, 132syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... j
) ) )  e. 
Fin )
134 hashcl 13147 . . . . . . . 8  |-  ( ( G " ( `' G " ( M ... j ) ) )  e.  Fin  ->  (
# `  ( G " ( `' G "
( M ... j
) ) ) )  e.  NN0 )
135 nn0p1nn 11332 . . . . . . . 8  |-  ( (
# `  ( G " ( `' G "
( M ... j
) ) ) )  e.  NN0  ->  ( (
# `  ( G " ( `' G "
( M ... j
) ) ) )  +  1 )  e.  NN )
136133, 134, 1353syl 18 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 )  e.  NN )
137 eluzle 11700 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  (
( # `  ( G
" ( `' G " ( M ... j
) ) ) )  +  1 ) )  ->  ( ( # `  ( G " ( `' G " ( M ... j ) ) ) )  +  1 )  <_  k )
138137adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 )  <_ 
k )
139133adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G " ( `' G "
( M ... j
) ) )  e. 
Fin )
140 nn0z 11400 . . . . . . . . . . . . . . . 16  |-  ( (
# `  ( G " ( `' G "
( M ... j
) ) ) )  e.  NN0  ->  ( # `  ( G " ( `' G " ( M ... j ) ) ) )  e.  ZZ )
141139, 134, 1403syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( `' G " ( M ... j
) ) ) )  e.  ZZ )
142 eluzelz 11697 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  (
( # `  ( G
" ( `' G " ( M ... j
) ) ) )  +  1 ) )  ->  k  e.  ZZ )
143142adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  k  e.  ZZ )
144 zltp1le 11427 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  ( G " ( `' G " ( M ... j
) ) ) )  e.  ZZ  /\  k  e.  ZZ )  ->  (
( # `  ( G
" ( `' G " ( M ... j
) ) ) )  <  k  <->  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 )  <_ 
k ) )
145141, 143, 144syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  <  k  <->  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 )  <_ 
k ) )
146138, 145mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( `' G " ( M ... j
) ) ) )  <  k )
147 nn0re 11301 . . . . . . . . . . . . . . . 16  |-  ( (
# `  ( G " ( `' G "
( M ... j
) ) ) )  e.  NN0  ->  ( # `  ( G " ( `' G " ( M ... j ) ) ) )  e.  RR )
148133, 134, 1473syl 18 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  ( G " ( `' G " ( M ... j
) ) ) )  e.  RR )
149148adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( `' G " ( M ... j
) ) ) )  e.  RR )
150 eluznn 11758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( # `  ( G " ( `' G " ( M ... j
) ) ) )  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  k  e.  NN )
151136, 150sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  k  e.  NN )
152151nnred 11035 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  k  e.  RR )
153149, 152ltnled 10184 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  <  k  <->  -.  k  <_  ( # `  ( G " ( `' G " ( M ... j
) ) ) ) ) )
154146, 153mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  -.  k  <_  ( # `  ( G " ( `' G " ( M ... j
) ) ) ) )
155 fzss2 12381 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  ( G `  k )
)  ->  ( M ... ( G `  k
) )  C_  ( M ... j ) )
156 imass2 5501 . . . . . . . . . . . . . 14  |-  ( ( M ... ( G `
 k ) ) 
C_  ( M ... j )  ->  ( `' G " ( M ... ( G `  k ) ) ) 
C_  ( `' G " ( M ... j
) ) )
157 imass2 5501 . . . . . . . . . . . . . 14  |-  ( ( `' G " ( M ... ( G `  k ) ) ) 
C_  ( `' G " ( M ... j
) )  ->  ( G " ( `' G " ( M ... ( G `  k )
) ) )  C_  ( G " ( `' G " ( M ... j ) ) ) )
158155, 156, 1573syl 18 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  ( G `  k )
)  ->  ( G " ( `' G "
( M ... ( G `  k )
) ) )  C_  ( G " ( `' G " ( M ... j ) ) ) )
159 ssdomg 8001 . . . . . . . . . . . . . . 15  |-  ( ( G " ( `' G " ( M ... j ) ) )  e.  Fin  ->  ( ( G " (
1 ... k ) ) 
C_  ( G "
( `' G "
( M ... j
) ) )  -> 
( G " (
1 ... k ) )  ~<_  ( G " ( `' G " ( M ... j ) ) ) ) )
160139, 159syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( G " ( 1 ... k ) )  C_  ( G " ( `' G " ( M ... j ) ) )  ->  ( G " ( 1 ... k
) )  ~<_  ( G
" ( `' G " ( M ... j
) ) ) ) )
1614ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  G : NN
--> Z )
162161ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  Z )
163162, 1syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  ( ZZ>= `  M )
)
164161, 151ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G `  k )  e.  Z
)
1653, 164sseldi 3601 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G `  k )  e.  ZZ )
166165adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ( G `  k )  e.  ZZ )
167 elfz5 12334 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G `  x
)  e.  ( ZZ>= `  M )  /\  ( G `  k )  e.  ZZ )  ->  (
( G `  x
)  e.  ( M ... ( G `  k ) )  <->  ( G `  x )  <_  ( G `  k )
) )
168163, 166, 167syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... ( G `  k ) )  <->  ( G `  x )  <_  ( G `  k )
) )
16930ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
170 nnssre 11024 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  C_  RR
171 ressxr 10083 . . . . . . . . . . . . . . . . . . . . . . 23  |-  RR  C_  RR*
172170, 171sstri 3612 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  C_  RR*
173172a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  NN  C_ 
RR* )
174 imassrn 5477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G
" NN )  C_  ran  G
175161adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  G : NN --> Z )
176 frn 6053 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( G : NN --> Z  ->  ran  G  C_  Z )
177175, 176syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  Z )
178177, 56syl6ss 3615 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  RR )
179174, 178syl5ss 3614 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR )
180179, 171syl6ss 3615 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR* )
181 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  x  e.  NN )
182151adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  k  e.  NN )
183 leisorel 13244 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( NN  C_  RR* 
/\  ( G " NN )  C_  RR* )  /\  ( x  e.  NN  /\  k  e.  NN ) )  ->  ( x  <_  k  <->  ( G `  x )  <_  ( G `  k )
) )
184169, 173, 180, 181, 182, 183syl122anc 1335 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  k  <->  ( G `  x )  <_  ( G `  k )
) )
185168, 184bitr4d 271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... ( G `  k ) )  <->  x  <_  k ) )
186185pm5.32da 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( (
x  e.  NN  /\  ( G `  x )  e.  ( M ... ( G `  k ) ) )  <->  ( x  e.  NN  /\  x  <_ 
k ) ) )
187 elpreima 6337 . . . . . . . . . . . . . . . . . . 19  |-  ( G  Fn  NN  ->  (
x  e.  ( `' G " ( M ... ( G `  k ) ) )  <-> 
( x  e.  NN  /\  ( G `  x
)  e.  ( M ... ( G `  k ) ) ) ) )
188161, 26, 1873syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... ( G `  k )
) )  <->  ( x  e.  NN  /\  ( G `
 x )  e.  ( M ... ( G `  k )
) ) ) )
189 fznn 12408 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ZZ  ->  (
x  e.  ( 1 ... k )  <->  ( x  e.  NN  /\  x  <_ 
k ) ) )
190143, 189syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( x  e.  ( 1 ... k
)  <->  ( x  e.  NN  /\  x  <_ 
k ) ) )
191186, 188, 1903bitr4d 300 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... ( G `  k )
) )  <->  x  e.  ( 1 ... k
) ) )
192191eqrdv 2620 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( `' G " ( M ... ( G `  k ) ) )  =  ( 1 ... k ) )
193192imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G " ( `' G "
( M ... ( G `  k )
) ) )  =  ( G " (
1 ... k ) ) )
194193sseq1d 3632 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( G " ( `' G " ( M ... ( G `  k )
) ) )  C_  ( G " ( `' G " ( M ... j ) ) )  <->  ( G "
( 1 ... k
) )  C_  ( G " ( `' G " ( M ... j
) ) ) ) )
19536ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  G : NN
-1-1-> Z )
196 elfznn 12370 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( 1 ... k )  ->  x  e.  NN )
197196ssriv 3607 . . . . . . . . . . . . . . . . . . 19  |-  ( 1 ... k )  C_  NN
198 ovex 6678 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... k )  e. 
_V
199198f1imaen 8018 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : NN -1-1-> Z  /\  ( 1 ... k
)  C_  NN )  ->  ( G " (
1 ... k ) ) 
~~  ( 1 ... k ) )
200195, 197, 199sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G " ( 1 ... k
) )  ~~  (
1 ... k ) )
201 fzfid 12772 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( 1 ... k )  e. 
Fin )
202 enfii 8177 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1 ... k
)  e.  Fin  /\  ( G " ( 1 ... k ) ) 
~~  ( 1 ... k ) )  -> 
( G " (
1 ... k ) )  e.  Fin )
203201, 200, 202syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G " ( 1 ... k
) )  e.  Fin )
204 hashen 13135 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G " (
1 ... k ) )  e.  Fin  /\  (
1 ... k )  e. 
Fin )  ->  (
( # `  ( G
" ( 1 ... k ) ) )  =  ( # `  (
1 ... k ) )  <-> 
( G " (
1 ... k ) ) 
~~  ( 1 ... k ) ) )
205203, 201, 204syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( # `
 ( G "
( 1 ... k
) ) )  =  ( # `  (
1 ... k ) )  <-> 
( G " (
1 ... k ) ) 
~~  ( 1 ... k ) ) )
206200, 205mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( 1 ... k ) ) )  =  ( # `  (
1 ... k ) ) )
207 nnnn0 11299 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  e.  NN0 )
208 hashfz1 13134 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( # `  ( 1 ... k
) )  =  k )
209151, 207, 2083syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  (
1 ... k ) )  =  k )
210206, 209eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( 1 ... k ) ) )  =  k )
211210breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( # `
 ( G "
( 1 ... k
) ) )  <_ 
( # `  ( G
" ( `' G " ( M ... j
) ) ) )  <-> 
k  <_  ( # `  ( G " ( `' G " ( M ... j
) ) ) ) ) )
212 hashdom 13168 . . . . . . . . . . . . . . . 16  |-  ( ( ( G " (
1 ... k ) )  e.  Fin  /\  ( G " ( `' G " ( M ... j
) ) )  e. 
Fin )  ->  (
( # `  ( G
" ( 1 ... k ) ) )  <_  ( # `  ( G " ( `' G " ( M ... j
) ) ) )  <-> 
( G " (
1 ... k ) )  ~<_  ( G " ( `' G " ( M ... j ) ) ) ) )
213203, 139, 212syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( # `
 ( G "
( 1 ... k
) ) )  <_ 
( # `  ( G
" ( `' G " ( M ... j
) ) ) )  <-> 
( G " (
1 ... k ) )  ~<_  ( G " ( `' G " ( M ... j ) ) ) ) )
214211, 213bitr3d 270 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( k  <_  ( # `  ( G " ( `' G " ( M ... j
) ) ) )  <-> 
( G " (
1 ... k ) )  ~<_  ( G " ( `' G " ( M ... j ) ) ) ) )
215160, 194, 2143imtr4d 283 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( G " ( `' G " ( M ... ( G `  k )
) ) )  C_  ( G " ( `' G " ( M ... j ) ) )  ->  k  <_  (
# `  ( G " ( `' G "
( M ... j
) ) ) ) ) )
216158, 215syl5 34 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( j  e.  ( ZZ>= `  ( G `  k ) )  -> 
k  <_  ( # `  ( G " ( `' G " ( M ... j
) ) ) ) ) )
217154, 216mtod 189 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  -.  j  e.  ( ZZ>= `  ( G `  k ) ) )
218 eluzelz 11697 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  ( G `  1 )
)  ->  j  e.  ZZ )
219218ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  j  e.  ZZ )
220 uztric 11709 . . . . . . . . . . . . 13  |-  ( ( ( G `  k
)  e.  ZZ  /\  j  e.  ZZ )  ->  ( j  e.  (
ZZ>= `  ( G `  k ) )  \/  ( G `  k
)  e.  ( ZZ>= `  j ) ) )
221165, 219, 220syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( j  e.  ( ZZ>= `  ( G `  k ) )  \/  ( G `  k
)  e.  ( ZZ>= `  j ) ) )
222221ord 392 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( -.  j  e.  ( ZZ>= `  ( G `  k ) )  ->  ( G `  k )  e.  (
ZZ>= `  j ) ) )
223217, 222mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( G `  k )  e.  (
ZZ>= `  j ) )
224 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( G `  k )  ->  ( M ... m )  =  ( M ... ( G `  k )
) )
225224imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( G `  k )  ->  ( `' G " ( M ... m ) )  =  ( `' G " ( M ... ( G `  k )
) ) )
226225imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( m  =  ( G `  k )  ->  ( G " ( `' G " ( M ... m
) ) )  =  ( G " ( `' G " ( M ... ( G `  k ) ) ) ) )
227226fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( m  =  ( G `  k )  ->  ( # `
 ( G "
( `' G "
( M ... m
) ) ) )  =  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) ) )
228227fveq2d 6195 . . . . . . . . . . . . 13  |-  ( m  =  ( G `  k )  ->  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  =  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) ) )
229228eleq1d 2686 . . . . . . . . . . . 12  |-  ( m  =  ( G `  k )  ->  (
(  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  <->  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  e.  CC ) )
230228oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( m  =  ( G `  k )  ->  (
(  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A )  =  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  -  A ) )
231230fveq2d 6195 . . . . . . . . . . . . 13  |-  ( m  =  ( G `  k )  ->  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) )  -  A ) )  =  ( abs `  ( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) ) )
232231breq1d 4663 . . . . . . . . . . . 12  |-  ( m  =  ( G `  k )  ->  (
( abs `  (
(  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x  <->  ( abs `  ( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) )  <  x ) )
233229, 232anbi12d 747 . . . . . . . . . . 11  |-  ( m  =  ( G `  k )  ->  (
( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  <-> 
( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) )  <  x ) ) )
234233rspcv 3305 . . . . . . . . . 10  |-  ( ( G `  k )  e.  ( ZZ>= `  j
)  ->  ( A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  ->  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) )  <  x ) ) )
235223, 234syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  ->  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) )  <  x ) ) )
236193fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) )  =  ( # `  ( G " ( 1 ... k ) ) ) )
237236, 210eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) )  =  k )
238237fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  =  (  seq 1 (  +  ,  H ) `  k
) )
239238eleq1d 2686 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  e.  CC  <->  (  seq 1 (  +  ,  H ) `  k
)  e.  CC ) )
240238oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  -  A )  =  ( (  seq 1 (  +  ,  H ) `  k
)  -  A ) )
241240fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) )  =  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) ) )
242241breq1d 4663 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... ( G `  k )
) ) ) ) )  -  A ) )  <  x  <->  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x ) )
243239, 242anbi12d 747 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( (
(  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... ( G `  k )
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... ( G `  k )
) ) ) ) )  -  A ) )  <  x )  <-> 
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x ) ) )
244235, 243sylibd 229 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  ->  ( (  seq 1 (  +  ,  H ) `  k
)  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
) ) )
245244ralrimdva 2969 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  ->  A. k  e.  (
ZZ>= `  ( ( # `  ( G " ( `' G " ( M ... j ) ) ) )  +  1 ) ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
) ) )
246 fveq2 6191 . . . . . . . . 9  |-  ( n  =  ( ( # `  ( G " ( `' G " ( M ... j ) ) ) )  +  1 )  ->  ( ZZ>= `  n )  =  (
ZZ>= `  ( ( # `  ( G " ( `' G " ( M ... j ) ) ) )  +  1 ) ) )
247246raleqdv 3144 . . . . . . . 8  |-  ( n  =  ( ( # `  ( G " ( `' G " ( M ... j ) ) ) )  +  1 )  ->  ( A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
)  <->  A. k  e.  (
ZZ>= `  ( ( # `  ( G " ( `' G " ( M ... j ) ) ) )  +  1 ) ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
) ) )
248247rspcev 3309 . . . . . . 7  |-  ( ( ( ( # `  ( G " ( `' G " ( M ... j
) ) ) )  +  1 )  e.  NN  /\  A. k  e.  ( ZZ>= `  ( ( # `
 ( G "
( `' G "
( M ... j
) ) ) )  +  1 ) ) ( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x ) )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
) )
249136, 245, 248syl6an 568 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
) ) )
250249rexlimdva 3031 . . . . 5  |-  ( ph  ->  ( E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  (
ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
) ) )
251125, 250impbid 202 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x )  <->  E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  (
ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
252251ralbidv 2986 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( (  seq 1 (  +  ,  H ) `  k )  e.  CC  /\  ( abs `  (
(  seq 1 (  +  ,  H ) `  k )  -  A
) )  <  x
)  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  ( ZZ>= `  j )
( (  seq 1
(  +  ,  H
) `  ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) )
253252anbi2d 740 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  (
ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) ) )
254 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
255 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
256 seqex 12803 . . . 4  |-  seq 1
(  +  ,  H
)  e.  _V
257256a1i 11 . . 3  |-  ( ph  ->  seq 1 (  +  ,  H )  e. 
_V )
258 eqidd 2623 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  k
)  =  (  seq 1 (  +  ,  H ) `  k
) )
259254, 255, 257, 258clim2 14235 . 2  |-  ( ph  ->  (  seq 1 (  +  ,  H )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( (  seq 1
(  +  ,  H
) `  k )  e.  CC  /\  ( abs `  ( (  seq 1
(  +  ,  H
) `  k )  -  A ) )  < 
x ) ) ) )
260120, 121syl 17 . . 3  |-  ( ph  ->  ( G `  1
)  e.  ZZ )
261 seqex 12803 . . . 4  |-  seq M
(  +  ,  F
)  e.  _V
262261a1i 11 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
_V )
263 isercoll.0 . . . 4  |-  ( (
ph  /\  n  e.  ( Z  \  ran  G
) )  ->  ( F `  n )  =  0 )
264 isercoll.f . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  CC )
265 isercoll.h . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( F `  ( G `  k )
) )
2661, 22, 4, 23, 263, 264, 265isercolllem3 14397 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  (  seq M (  +  ,  F ) `  m
)  =  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... m
) ) ) ) ) )
267122, 260, 262, 266clim2 14235 . 2  |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  ( G `  1 ) ) A. m  e.  (
ZZ>= `  j ) ( (  seq 1 (  +  ,  H ) `
 ( # `  ( G " ( `' G " ( M ... m
) ) ) ) )  e.  CC  /\  ( abs `  ( (  seq 1 (  +  ,  H ) `  ( # `  ( G
" ( `' G " ( M ... m
) ) ) ) )  -  A ) )  <  x ) ) ) )
268253, 259, 2673bitr4d 300 1  |-  ( ph  ->  (  seq 1 (  +  ,  H )  ~~>  A  <->  seq M (  +  ,  F )  ~~>  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   class class class wbr 4653   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801   #chash 13117   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-clim 14219
This theorem is referenced by:  isercoll2  14399
  Copyright terms: Public domain W3C validator