Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem2 Structured version   Visualization version   Unicode version

Theorem knoppndvlem2 32504
Description: Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem2.n  |-  ( ph  ->  N  e.  NN )
knoppndvlem2.i  |-  ( ph  ->  I  e.  ZZ )
knoppndvlem2.j  |-  ( ph  ->  J  e.  ZZ )
knoppndvlem2.m  |-  ( ph  ->  M  e.  ZZ )
knoppndvlem2.1  |-  ( ph  ->  J  <  I )
Assertion
Ref Expression
knoppndvlem2  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )  e.  ZZ )

Proof of Theorem knoppndvlem2
StepHypRef Expression
1 2cnd 11093 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
2 knoppndvlem2.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
3 nnz 11399 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
42, 3syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
54zcnd 11483 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
61, 5mulcld 10060 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  CC )
7 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
87a1i 11 . . . . . . 7  |-  ( ph  ->  2  =/=  0 )
9 0red 10041 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
10 1red 10055 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
114zred 11482 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
12 0lt1 10550 . . . . . . . . . . 11  |-  0  <  1
1312a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  <  1 )
14 nnge1 11046 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  <_  N )
152, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  1  <_  N )
169, 10, 11, 13, 15ltletrd 10197 . . . . . . . . 9  |-  ( ph  ->  0  <  N )
179, 16ltned 10173 . . . . . . . 8  |-  ( ph  ->  0  =/=  N )
1817necomd 2849 . . . . . . 7  |-  ( ph  ->  N  =/=  0 )
191, 5, 8, 18mulne0d 10679 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  =/=  0 )
20 knoppndvlem2.i . . . . . 6  |-  ( ph  ->  I  e.  ZZ )
216, 19, 20expclzd 13013 . . . . 5  |-  ( ph  ->  ( ( 2  x.  N ) ^ I
)  e.  CC )
22 knoppndvlem2.j . . . . . . . 8  |-  ( ph  ->  J  e.  ZZ )
2322znegcld 11484 . . . . . . 7  |-  ( ph  -> 
-u J  e.  ZZ )
246, 19, 23expclzd 13013 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  e.  CC )
2524, 1, 8divcld 10801 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  e.  CC )
26 knoppndvlem2.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
2726zcnd 11483 . . . . 5  |-  ( ph  ->  M  e.  CC )
2821, 25, 27mulassd 10063 . . . 4  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ I )  x.  ( ( ( 2  x.  N ) ^ -u J )  /  2
) )  x.  M
)  =  ( ( ( 2  x.  N
) ^ I )  x.  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  M ) ) )
2928eqcomd 2628 . . 3  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )  =  ( ( ( ( 2  x.  N ) ^ I
)  x.  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  x.  M ) )
3021, 24, 1, 8divassd 10836 . . . . . 6  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ I )  x.  ( ( 2  x.  N ) ^ -u J
) )  /  2
)  =  ( ( ( 2  x.  N
) ^ I )  x.  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )
3130eqcomd 2628 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  =  ( ( ( ( 2  x.  N ) ^ I
)  x.  ( ( 2  x.  N ) ^ -u J ) )  /  2 ) )
326, 19jca 554 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  N )  e.  CC  /\  ( 2  x.  N
)  =/=  0 ) )
3320, 23jca 554 . . . . . . . . . 10  |-  ( ph  ->  ( I  e.  ZZ  /\  -u J  e.  ZZ ) )
3432, 33jca 554 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  N )  e.  CC  /\  ( 2  x.  N )  =/=  0 )  /\  (
I  e.  ZZ  /\  -u J  e.  ZZ ) ) )
35 expaddz 12904 . . . . . . . . 9  |-  ( ( ( ( 2  x.  N )  e.  CC  /\  ( 2  x.  N
)  =/=  0 )  /\  ( I  e.  ZZ  /\  -u J  e.  ZZ ) )  -> 
( ( 2  x.  N ) ^ (
I  +  -u J
) )  =  ( ( ( 2  x.  N ) ^ I
)  x.  ( ( 2  x.  N ) ^ -u J ) ) )
3634, 35syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  N ) ^ (
I  +  -u J
) )  =  ( ( ( 2  x.  N ) ^ I
)  x.  ( ( 2  x.  N ) ^ -u J ) ) )
3736eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( 2  x.  N
) ^ -u J
) )  =  ( ( 2  x.  N
) ^ ( I  +  -u J ) ) )
3820zcnd 11483 . . . . . . . . 9  |-  ( ph  ->  I  e.  CC )
3922zcnd 11483 . . . . . . . . 9  |-  ( ph  ->  J  e.  CC )
4038, 39negsubd 10398 . . . . . . . 8  |-  ( ph  ->  ( I  +  -u J )  =  ( I  -  J ) )
4140oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  N ) ^ (
I  +  -u J
) )  =  ( ( 2  x.  N
) ^ ( I  -  J ) ) )
42 knoppndvlem2.1 . . . . . . . . . 10  |-  ( ph  ->  J  <  I )
4322, 20jca 554 . . . . . . . . . . 11  |-  ( ph  ->  ( J  e.  ZZ  /\  I  e.  ZZ ) )
44 znnsub 11423 . . . . . . . . . . 11  |-  ( ( J  e.  ZZ  /\  I  e.  ZZ )  ->  ( J  <  I  <->  ( I  -  J )  e.  NN ) )
4543, 44syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( J  <  I  <->  ( I  -  J )  e.  NN ) )
4642, 45mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( I  -  J
)  e.  NN )
476, 46jca 554 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  N )  e.  CC  /\  ( I  -  J
)  e.  NN ) )
48 expm1t 12888 . . . . . . . 8  |-  ( ( ( 2  x.  N
)  e.  CC  /\  ( I  -  J
)  e.  NN )  ->  ( ( 2  x.  N ) ^
( I  -  J
) )  =  ( ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  x.  ( 2  x.  N ) ) )
4947, 48syl 17 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  N ) ^ (
I  -  J ) )  =  ( ( ( 2  x.  N
) ^ ( ( I  -  J )  -  1 ) )  x.  ( 2  x.  N ) ) )
5037, 41, 493eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( 2  x.  N
) ^ -u J
) )  =  ( ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  x.  ( 2  x.  N ) ) )
5150oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ I )  x.  ( ( 2  x.  N ) ^ -u J
) )  /  2
)  =  ( ( ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  x.  ( 2  x.  N ) )  /  2 ) )
5220, 22jca 554 . . . . . . . . . . . 12  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
53 zsubcl 11419 . . . . . . . . . . . 12  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  -  J
)  e.  ZZ )
5452, 53syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( I  -  J
)  e.  ZZ )
55 peano2zm 11420 . . . . . . . . . . 11  |-  ( ( I  -  J )  e.  ZZ  ->  (
( I  -  J
)  -  1 )  e.  ZZ )
5654, 55syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( I  -  J )  -  1 )  e.  ZZ )
5722zred 11482 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  RR )
5820zred 11482 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  RR )
5957, 58posdifd 10614 . . . . . . . . . . . 12  |-  ( ph  ->  ( J  <  I  <->  0  <  ( I  -  J ) ) )
6042, 59mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  0  <  ( I  -  J ) )
61 0zd 11389 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  ZZ )
6261, 54jca 554 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  e.  ZZ  /\  ( I  -  J
)  e.  ZZ ) )
63 zltlem1 11430 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  ( I  -  J
)  e.  ZZ )  ->  ( 0  < 
( I  -  J
)  <->  0  <_  (
( I  -  J
)  -  1 ) ) )
6462, 63syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  <  (
I  -  J )  <->  0  <_  ( (
I  -  J )  -  1 ) ) )
6560, 64mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( (
I  -  J )  -  1 ) )
6656, 65jca 554 . . . . . . . . 9  |-  ( ph  ->  ( ( ( I  -  J )  - 
1 )  e.  ZZ  /\  0  <_  ( (
I  -  J )  -  1 ) ) )
67 elnn0z 11390 . . . . . . . . 9  |-  ( ( ( I  -  J
)  -  1 )  e.  NN0  <->  ( ( ( I  -  J )  -  1 )  e.  ZZ  /\  0  <_ 
( ( I  -  J )  -  1 ) ) )
6866, 67sylibr 224 . . . . . . . 8  |-  ( ph  ->  ( ( I  -  J )  -  1 )  e.  NN0 )
696, 68expcld 13008 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  e.  CC )
7069, 6, 1, 8divassd 10836 . . . . . 6  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ ( ( I  -  J )  - 
1 ) )  x.  ( 2  x.  N
) )  /  2
)  =  ( ( ( 2  x.  N
) ^ ( ( I  -  J )  -  1 ) )  x.  ( ( 2  x.  N )  / 
2 ) ) )
715, 1, 8divcan3d 10806 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  N )  /  2
)  =  N )
7271oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
( ( I  -  J )  -  1 ) )  x.  (
( 2  x.  N
)  /  2 ) )  =  ( ( ( 2  x.  N
) ^ ( ( I  -  J )  -  1 ) )  x.  N ) )
7370, 72eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ ( ( I  -  J )  - 
1 ) )  x.  ( 2  x.  N
) )  /  2
)  =  ( ( ( 2  x.  N
) ^ ( ( I  -  J )  -  1 ) )  x.  N ) )
7431, 51, 733eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  =  ( ( ( 2  x.  N
) ^ ( ( I  -  J )  -  1 ) )  x.  N ) )
7574oveq1d 6665 . . 3  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ I )  x.  ( ( ( 2  x.  N ) ^ -u J )  /  2
) )  x.  M
)  =  ( ( ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  x.  N )  x.  M ) )
7629, 75eqtrd 2656 . 2  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )  =  ( ( ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  x.  N )  x.  M ) )
77 2z 11409 . . . . . . . . 9  |-  2  e.  ZZ
7877a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  ZZ )
7978, 4jca 554 . . . . . . 7  |-  ( ph  ->  ( 2  e.  ZZ  /\  N  e.  ZZ ) )
80 zmulcl 11426 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
8179, 80syl 17 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  ZZ )
8281, 68jca 554 . . . . 5  |-  ( ph  ->  ( ( 2  x.  N )  e.  ZZ  /\  ( ( I  -  J )  -  1 )  e.  NN0 )
)
83 zexpcl 12875 . . . . 5  |-  ( ( ( 2  x.  N
)  e.  ZZ  /\  ( ( I  -  J )  -  1 )  e.  NN0 )  ->  ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  e.  ZZ )
8482, 83syl 17 . . . 4  |-  ( ph  ->  ( ( 2  x.  N ) ^ (
( I  -  J
)  -  1 ) )  e.  ZZ )
8584, 4zmulcld 11488 . . 3  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
( ( I  -  J )  -  1 ) )  x.  N
)  e.  ZZ )
8685, 26zmulcld 11488 . 2  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ ( ( I  -  J )  - 
1 ) )  x.  N )  x.  M
)  e.  ZZ )
8776, 86eqeltrd 2701 1  |-  ( ph  ->  ( ( ( 2  x.  N ) ^
I )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  knoppndvlem6  32508
  Copyright terms: Public domain W3C validator