MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrmodndvds Structured version   Visualization version   Unicode version

Theorem lgsqrmodndvds 25078
Description: If the Legendre symbol of an integer  A for an odd prime is  1, then the number is a quadratic residue  mod 
P with a solution  x of the congruence  ( x ^ 2 )  ==  A (mod  P) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021.)
Assertion
Ref Expression
lgsqrmodndvds  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  E. x  e.  ZZ  ( ( ( x ^ 2 )  mod  P )  =  ( A  mod  P
)  /\  -.  P  ||  x ) ) )
Distinct variable groups:    x, A    x, P

Proof of Theorem lgsqrmodndvds
StepHypRef Expression
1 lgsqrmod 25077 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  E. x  e.  ZZ  ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P ) ) )
21imp 445 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  ->  E. x  e.  ZZ  ( ( x ^
2 )  mod  P
)  =  ( A  mod  P ) )
3 eldifi 3732 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
4 prmnn 15388 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
53, 4syl 17 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
65ad3antlr 767 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  P  e.  NN )
7 zsqcl 12934 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
87adantl 482 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( x ^
2 )  e.  ZZ )
9 simplll 798 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  A  e.  ZZ )
10 moddvds 14991 . . . . . . 7  |-  ( ( P  e.  NN  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
116, 8, 9, 10syl3anc 1326 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod  P )  =  ( A  mod  P
)  <->  P  ||  ( ( x ^ 2 )  -  A ) ) )
125nnzd 11481 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
1312ad3antlr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  P  e.  ZZ )
1413, 8, 93jca 1242 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( P  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ ) )
1514adantl 482 . . . . . . . . . . 11  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  ( P  e.  ZZ  /\  (
x ^ 2 )  e.  ZZ  /\  A  e.  ZZ ) )
16 dvdssub2 15023 . . . . . . . . . . 11  |-  ( ( ( P  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  /\  P  ||  ( ( x ^ 2 )  -  A ) )  ->  ( P  ||  ( x ^ 2 )  <->  P  ||  A ) )
1715, 16sylan 488 . . . . . . . . . 10  |-  ( ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  /\  P  ||  ( ( x ^
2 )  -  A
) )  ->  ( P  ||  ( x ^
2 )  <->  P  ||  A
) )
1817ex 450 . . . . . . . . 9  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  ( P  ||  ( ( x ^ 2 )  -  A )  ->  ( P  ||  ( x ^
2 )  <->  P  ||  A
) ) )
19 bicom 212 . . . . . . . . . 10  |-  ( ( P  ||  ( x ^ 2 )  <->  P  ||  A
)  <->  ( P  ||  A 
<->  P  ||  ( x ^ 2 ) ) )
203ad3antlr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  P  e.  Prime )
21 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
22 2nn 11185 . . . . . . . . . . . . . 14  |-  2  e.  NN
2322a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  2  e.  NN )
24 prmdvdsexp 15427 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( x ^
2 )  <->  P  ||  x
) )
2520, 21, 23, 24syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( P  ||  ( x ^ 2 )  <->  P  ||  x ) )
2625biimparc 504 . . . . . . . . . . 11  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  P  ||  ( x ^ 2 ) )
27 bianir 1009 . . . . . . . . . . . . . 14  |-  ( ( P  ||  ( x ^ 2 )  /\  ( P  ||  A  <->  P  ||  (
x ^ 2 ) ) )  ->  P  ||  A )
285anim2i 593 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  e.  ZZ  /\  P  e.  NN ) )
2928ancomd 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  e.  NN  /\  A  e.  ZZ ) )
30 dvdsval3 14987 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
3129, 30syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
32 lgsprme0 25064 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  P  e.  Prime )  -> 
( ( A  /L P )  =  0  <->  ( A  mod  P )  =  0 ) )
333, 32sylan2 491 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  0  <->  ( A  mod  P )  =  0 ) )
34 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  /L P )  =  0  -> 
( ( A  /L P )  =  1  <->  0  =  1 ) )
35 0ne1 11088 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  =/=  1
36 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0  =  1  ->  (
0  =/=  1  ->  -.  P  ||  x ) )
3735, 36mpi 20 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  =  1  ->  -.  P  ||  x )
3837a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  /L P )  =  0  -> 
( 0  =  1  ->  -.  P  ||  x
) )
3934, 38sylbid 230 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  /L P )  =  0  -> 
( ( A  /L P )  =  1  ->  -.  P  ||  x ) )
4033, 39syl6bir 244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  mod  P )  =  0  ->  ( ( A  /L P )  =  1  ->  -.  P  ||  x ) ) )
4131, 40sylbid 230 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  ->  ( ( A  /L P )  =  1  ->  -.  P  ||  x ) ) )
4241com23 86 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  ( P  ||  A  ->  -.  P  ||  x ) ) )
4342imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  -> 
( P  ||  A  ->  -.  P  ||  x
) )
4443ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  ( P  ||  A  ->  -.  P  ||  x ) )
4544com12 32 . . . . . . . . . . . . . 14  |-  ( P 
||  A  ->  (
( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  -.  P  ||  x ) )
4627, 45syl 17 . . . . . . . . . . . . 13  |-  ( ( P  ||  ( x ^ 2 )  /\  ( P  ||  A  <->  P  ||  (
x ^ 2 ) ) )  ->  (
( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  -.  P  ||  x ) )
4746ex 450 . . . . . . . . . . . 12  |-  ( P 
||  ( x ^
2 )  ->  (
( P  ||  A  <->  P 
||  ( x ^
2 ) )  -> 
( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )
)  ->  -.  P  ||  x ) ) )
4847com23 86 . . . . . . . . . . 11  |-  ( P 
||  ( x ^
2 )  ->  (
( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  (
( P  ||  A  <->  P 
||  ( x ^
2 ) )  ->  -.  P  ||  x ) ) )
4926, 48mpcom 38 . . . . . . . . . 10  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  (
( P  ||  A  <->  P 
||  ( x ^
2 ) )  ->  -.  P  ||  x ) )
5019, 49syl5bi 232 . . . . . . . . 9  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  (
( P  ||  (
x ^ 2 )  <-> 
P  ||  A )  ->  -.  P  ||  x
) )
5118, 50syld 47 . . . . . . . 8  |-  ( ( P  ||  x  /\  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ ) )  ->  ( P  ||  ( ( x ^ 2 )  -  A )  ->  -.  P  ||  x ) )
5251ex 450 . . . . . . 7  |-  ( P 
||  x  ->  (
( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( P  ||  ( ( x ^
2 )  -  A
)  ->  -.  P  ||  x ) ) )
53 2a1 28 . . . . . . 7  |-  ( -.  P  ||  x  -> 
( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( P  ||  (
( x ^ 2 )  -  A )  ->  -.  P  ||  x
) ) )
5452, 53pm2.61i 176 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( P  ||  ( ( x ^
2 )  -  A
)  ->  -.  P  ||  x ) )
5511, 54sylbid 230 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod  P )  =  ( A  mod  P
)  ->  -.  P  ||  x ) )
5655ancld 576 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  /\  x  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod  P )  =  ( A  mod  P
)  ->  ( (
( x ^ 2 )  mod  P )  =  ( A  mod  P )  /\  -.  P  ||  x ) ) )
5756reximdva 3017 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  -> 
( E. x  e.  ZZ  ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  ->  E. x  e.  ZZ  ( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  /\  -.  P  ||  x ) ) )
582, 57mpd 15 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  ( A  /L P )  =  1 )  ->  E. x  e.  ZZ  ( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  /\  -.  P  ||  x ) )
5958ex 450 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  E. x  e.  ZZ  ( ( ( x ^ 2 )  mod  P )  =  ( A  mod  P
)  /\  -.  P  ||  x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   class class class wbr 4653  (class class class)co 6650   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   ZZcz 11377    mod cmo 12668   ^cexp 12860    || cdvds 14983   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-imas 16168  df-qus 16169  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-mdeg 23815  df-deg1 23816  df-mon1 23890  df-uc1p 23891  df-q1p 23892  df-r1p 23893  df-lgs 25020
This theorem is referenced by:  sfprmdvdsmersenne  41520
  Copyright terms: Public domain W3C validator