MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Structured version   Visualization version   Unicode version

Theorem lgsdchr 25080
Description: The Legendre symbol function  X ( m )  =  ( m  /L N ), where  N is an odd positive number, is a real Dirichlet character modulo  N. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g  |-  G  =  (DChr `  N )
lgsdchr.z  |-  Z  =  (ℤ/n `  N )
lgsdchr.d  |-  D  =  ( Base `  G
)
lgsdchr.b  |-  B  =  ( Base `  Z
)
lgsdchr.l  |-  L  =  ( ZRHom `  Z
)
lgsdchr.x  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
Assertion
Ref Expression
lgsdchr  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  /\  X : B
--> RR ) )
Distinct variable groups:    y, B    h, m, y, L    h, N, m, y    y, X   
y, Z
Allowed substitution hints:    B( h, m)    D( y, h, m)    G( y, h, m)    X( h, m)    Z( h, m)

Proof of Theorem lgsdchr
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 5868 . . . . . 6  |-  ( iota
h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) )  e. 
_V
21a1i 11 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  y  e.  B )  ->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) )  e. 
_V )
3 lgsdchr.x . . . . . 6  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  /L N ) ) ) )
43a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  /L N ) ) ) ) )
5 nnnn0 11299 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
65adantr 481 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN0 )
7 lgsdchr.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
8 lgsdchr.b . . . . . . . . 9  |-  B  =  ( Base `  Z
)
9 lgsdchr.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
107, 8, 9znzrhfo 19896 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
116, 10syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  L : ZZ -onto-> B )
12 foelrn 6378 . . . . . . 7  |-  ( ( L : ZZ -onto-> B  /\  x  e.  B
)  ->  E. a  e.  ZZ  x  =  ( L `  a ) )
1311, 12sylan 488 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  E. a  e.  ZZ  x  =  ( L `  a ) )
14 lgsdchr.g . . . . . . . . . . 11  |-  G  =  (DChr `  N )
15 lgsdchr.d . . . . . . . . . . 11  |-  D  =  ( Base `  G
)
1614, 7, 15, 8, 9, 3lgsdchrval 25079 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( X `
 ( L `  a ) )  =  ( a  /L
N ) )
17 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  a  e.  ZZ )
18 nnz 11399 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  ZZ )
1918ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  N  e.  ZZ )
20 lgscl 25036 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  N  e.  ZZ )  ->  ( a  /L
N )  e.  ZZ )
2117, 19, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( a  /L N )  e.  ZZ )
2221zred 11482 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( a  /L N )  e.  RR )
2316, 22eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( X `
 ( L `  a ) )  e.  RR )
24 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  ( X `  x )  =  ( X `  ( L `  a ) ) )
2524eleq1d 2686 . . . . . . . . 9  |-  ( x  =  ( L `  a )  ->  (
( X `  x
)  e.  RR  <->  ( X `  ( L `  a
) )  e.  RR ) )
2623, 25syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( x  =  ( L `  a )  ->  ( X `  x )  e.  RR ) )
2726rexlimdva 3031 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  x  =  ( L `  a )  ->  ( X `  x )  e.  RR ) )
2827imp 445 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  E. a  e.  ZZ  x  =  ( L `  a ) )  ->  ( X `  x )  e.  RR )
2913, 28syldan 487 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  ( X `  x )  e.  RR )
302, 4, 29fmpt2d 6393 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X : B --> RR )
31 ax-resscn 9993 . . . 4  |-  RR  C_  CC
32 fss 6056 . . . 4  |-  ( ( X : B --> RR  /\  RR  C_  CC )  ->  X : B --> CC )
3330, 31, 32sylancl 694 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X : B --> CC )
34 eqid 2622 . . . . . 6  |-  (Unit `  Z )  =  (Unit `  Z )
358, 34unitss 18660 . . . . 5  |-  (Unit `  Z )  C_  B
36 foelrn 6378 . . . . . . . . 9  |-  ( ( L : ZZ -onto-> B  /\  y  e.  B
)  ->  E. b  e.  ZZ  y  =  ( L `  b ) )
3711, 36sylan 488 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  y  e.  B )  ->  E. b  e.  ZZ  y  =  ( L `  b ) )
3813, 37anim12dan 882 . . . . . . 7  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )
39 reeanv 3107 . . . . . . . . 9  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  <->  ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )
4017adantrr 753 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  ZZ )
41 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  ZZ )
426adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  N  e.  NN0 )
43 lgsdirnn0 25069 . . . . . . . . . . . . 13  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  N  e.  NN0 )  ->  (
( a  x.  b
)  /L N )  =  ( ( a  /L N )  x.  ( b  /L N ) ) )
4440, 41, 42, 43syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  b )  /L
N )  =  ( ( a  /L
N )  x.  (
b  /L N ) ) )
457zncrng 19893 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
466, 45syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  Z  e.  CRing )
47 crngring 18558 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
4846, 47syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  Z  e.  Ring )
4948adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  Z  e.  Ring )
509zrhrhm 19860 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  Ring  ->  L  e.  (ring RingHom  Z ) )
5149, 50syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  L  e.  (ring RingHom  Z ) )
52 zringbas 19824 . . . . . . . . . . . . . . . 16  |-  ZZ  =  ( Base ` ring )
53 zringmulr 19827 . . . . . . . . . . . . . . . 16  |-  x.  =  ( .r ` ring )
54 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Z )  =  ( .r `  Z
)
5552, 53, 54rhmmul 18727 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  (ring RingHom  Z )  /\  a  e.  ZZ  /\  b  e.  ZZ )  ->  ( L `  ( a  x.  b ) )  =  ( ( L `  a ) ( .r
`  Z ) ( L `  b ) ) )
5651, 40, 41, 55syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( L `  (
a  x.  b ) )  =  ( ( L `  a ) ( .r `  Z
) ( L `  b ) ) )
5756fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  ( a  x.  b ) ) )  =  ( X `  ( ( L `  a ) ( .r
`  Z ) ( L `  b ) ) ) )
58 zmulcl 11426 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  x.  b
)  e.  ZZ )
5914, 7, 15, 8, 9, 3lgsdchrval 25079 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  x.  b )  e.  ZZ )  ->  ( X `  ( L `  ( a  x.  b ) ) )  =  ( ( a  x.  b )  /L N ) )
6058, 59sylan2 491 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  ( a  x.  b ) ) )  =  ( ( a  x.  b )  /L N ) )
6157, 60eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( a  x.  b )  /L N ) )
6216adantrr 753 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  a )
)  =  ( a  /L N ) )
6314, 7, 15, 8, 9, 3lgsdchrval 25079 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  b  e.  ZZ )  ->  ( X `
 ( L `  b ) )  =  ( b  /L
N ) )
6463adantrl 752 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  b )
)  =  ( b  /L N ) )
6562, 64oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( X `  ( L `  a ) )  x.  ( X `
 ( L `  b ) ) )  =  ( ( a  /L N )  x.  ( b  /L N ) ) )
6644, 61, 653eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) )
67 oveq12 6659 . . . . . . . . . . . . 13  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( x ( .r
`  Z ) y )  =  ( ( L `  a ) ( .r `  Z
) ( L `  b ) ) )
6867fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( X `
 ( ( L `
 a ) ( .r `  Z ) ( L `  b
) ) ) )
69 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  ( L `  b )  ->  ( X `  y )  =  ( X `  ( L `  b ) ) )
7024, 69oveqan12d 6669 . . . . . . . . . . . 12  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( ( X `  x )  x.  ( X `  y )
)  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) )
7168, 70eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) ) )
7266, 71syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( x  =  ( L `  a
)  /\  y  =  ( L `  b ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
7372rexlimdvva 3038 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( x  =  ( L `  a
)  /\  y  =  ( L `  b ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
7439, 73syl5bir 233 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
7574imp 445 . . . . . . 7  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
7638, 75syldan 487 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
7776ralrimivva 2971 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )
78 ssralv 3666 . . . . . . 7  |-  ( (Unit `  Z )  C_  B  ->  ( A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
) ) )
7978ralimdv 2963 . . . . . 6  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. x  e.  B  A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
) ) )
80 ssralv 3666 . . . . . 6  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8179, 80syld 47 . . . . 5  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8235, 77, 81mpsyl 68 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
83 1z 11407 . . . . . 6  |-  1  e.  ZZ
8414, 7, 15, 8, 9, 3lgsdchrval 25079 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  1  e.  ZZ )  ->  ( X `
 ( L ` 
1 ) )  =  ( 1  /L
N ) )
8583, 84mpan2 707 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( L `  1 ) )  =  ( 1  /L N ) )
86 eqid 2622 . . . . . . . 8  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
879, 86zrh1 19861 . . . . . . 7  |-  ( Z  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Z
) )
8848, 87syl 17 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( L ` 
1 )  =  ( 1r `  Z ) )
8988fveq2d 6195 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( L `  1 ) )  =  ( X `
 ( 1r `  Z ) ) )
9018adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  ZZ )
91 1lgs 25065 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1  /L N )  =  1 )
9290, 91syl 17 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( 1  /L N )  =  1 )
9385, 89, 923eqtr3d 2664 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( 1r `  Z ) )  =  1 )
94 lgsne0 25060 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( a  /L N )  =/=  0  <->  ( a  gcd 
N )  =  1 ) )
9517, 19, 94syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( a  /L N )  =/=  0  <->  (
a  gcd  N )  =  1 ) )
9695biimpd 219 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( a  /L N )  =/=  0  -> 
( a  gcd  N
)  =  1 ) )
9716neeq1d 2853 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( X `  ( L `
 a ) )  =/=  0  <->  ( a  /L N )  =/=  0 ) )
987, 34, 9znunit 19912 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  a  e.  ZZ )  ->  ( ( L `  a )  e.  (Unit `  Z )  <->  ( a  gcd  N )  =  1 ) )
996, 98sylan 488 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( L `  a )  e.  (Unit `  Z
)  <->  ( a  gcd 
N )  =  1 ) )
10096, 97, 993imtr4d 283 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( X `  ( L `
 a ) )  =/=  0  ->  ( L `  a )  e.  (Unit `  Z )
) )
10124neeq1d 2853 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  (
( X `  x
)  =/=  0  <->  ( X `  ( L `  a ) )  =/=  0 ) )
102 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  (
x  e.  (Unit `  Z )  <->  ( L `  a )  e.  (Unit `  Z ) ) )
103101, 102imbi12d 334 . . . . . . . . 9  |-  ( x  =  ( L `  a )  ->  (
( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z ) )  <->  ( ( X `  ( L `  a ) )  =/=  0  ->  ( L `  a )  e.  (Unit `  Z ) ) ) )
104100, 103syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( x  =  ( L `  a )  ->  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) ) )
105104rexlimdva 3031 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  x  =  ( L `  a )  ->  ( ( X `
 x )  =/=  0  ->  x  e.  (Unit `  Z ) ) ) )
106105imp 445 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  E. a  e.  ZZ  x  =  ( L `  a ) )  ->  ( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z )
) )
10713, 106syldan 487 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) )
108107ralrimiva 2966 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z ) ) )
10982, 93, 1083jca 1242 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
)  /\  ( X `  ( 1r `  Z
) )  =  1  /\  A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  (Unit `  Z ) ) ) )
110 simpl 473 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN )
11114, 7, 8, 34, 110, 15dchrelbas3 24963 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  <->  ( X : B
--> CC  /\  ( A. x  e.  (Unit `  Z
) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  Z ) )  =  1  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) ) ) ) )
11233, 109, 111mpbir2and 957 . 2  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X  e.  D
)
113112, 30jca 554 1  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  /\  X : B
--> RR ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   iotacio 5849   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377    || cdvds 14983    gcd cgcd 15216   Basecbs 15857   .rcmulr 15942   1rcur 18501   Ringcrg 18547   CRingccrg 18548  Unitcui 18639   RingHom crh 18712  ℤringzring 19818   ZRHomczrh 19848  ℤ/nczn 19851  DChrcdchr 24957    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-dchr 24958  df-lgs 25020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator