MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrhfo Structured version   Visualization version   Unicode version

Theorem znzrhfo 19896
Description: The  ZZ ring homomorphism is a surjection onto  ZZ  /  n ZZ. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
znzrhfo.y  |-  Y  =  (ℤ/n `  N )
znzrhfo.b  |-  B  =  ( Base `  Y
)
znzrhfo.2  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znzrhfo  |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )

Proof of Theorem znzrhfo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . . 4  |-  ( N  e.  NN0  ->  (ring  /.s  (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) )  =  (ring 
/.s  (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) ) )
2 zringbas 19824 . . . . 5  |-  ZZ  =  ( Base ` ring )
32a1i 11 . . . 4  |-  ( N  e.  NN0  ->  ZZ  =  ( Base ` ring ) )
4 eqid 2622 . . . 4  |-  ( x  e.  ZZ  |->  [ x ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )  =  ( x  e.  ZZ  |->  [ x ]
(ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )
5 ovexd 6680 . . . 4  |-  ( N  e.  NN0  ->  (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  e. 
_V )
6 zringring 19821 . . . . 5  |-ring  e.  Ring
76a1i 11 . . . 4  |-  ( N  e.  NN0  ->ring  e.  Ring )
81, 3, 4, 5, 7quslem 16203 . . 3  |-  ( N  e.  NN0  ->  ( x  e.  ZZ  |->  [ x ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> ( ZZ
/. (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) ) )
9 eqid 2622 . . . . . 6  |-  (RSpan ` ring )  =  (RSpan ` ring )
10 znzrhfo.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
11 eqid 2622 . . . . . 6  |-  (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  =  (ring ~QG  (
(RSpan ` ring ) `  { N } ) )
129, 10, 11znbas 19892 . . . . 5  |-  ( N  e.  NN0  ->  ( ZZ
/. (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )  =  ( Base `  Y
) )
13 znzrhfo.b . . . . 5  |-  B  =  ( Base `  Y
)
1412, 13syl6eqr 2674 . . . 4  |-  ( N  e.  NN0  ->  ( ZZ
/. (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )  =  B )
15 foeq3 6113 . . . 4  |-  ( ( ZZ /. (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) )  =  B  ->  (
( x  e.  ZZ  |->  [ x ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> ( ZZ
/. (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )  <-> 
( x  e.  ZZ  |->  [ x ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> B ) )
1614, 15syl 17 . . 3  |-  ( N  e.  NN0  ->  ( ( x  e.  ZZ  |->  [ x ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> ( ZZ
/. (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )  <-> 
( x  e.  ZZ  |->  [ x ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> B ) )
178, 16mpbid 222 . 2  |-  ( N  e.  NN0  ->  ( x  e.  ZZ  |->  [ x ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> B )
18 znzrhfo.2 . . . 4  |-  L  =  ( ZRHom `  Y
)
199, 11, 10, 18znzrh2 19894 . . 3  |-  ( N  e.  NN0  ->  L  =  ( x  e.  ZZ  |->  [ x ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) )
20 foeq1 6111 . . 3  |-  ( L  =  ( x  e.  ZZ  |->  [ x ]
(ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )  ->  ( L : ZZ -onto-> B  <->  ( x  e.  ZZ  |->  [ x ]
(ring ~QG  (
(RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> B ) )
2119, 20syl 17 . 2  |-  ( N  e.  NN0  ->  ( L : ZZ -onto-> B  <->  ( x  e.  ZZ  |->  [ x ]
(ring ~QG  (
(RSpan ` ring ) `  { N } ) ) ) : ZZ -onto-> B ) )
2217, 21mpbird 247 1  |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    |-> cmpt 4729   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   [cec 7740   /.cqs 7741   NN0cn0 11292   ZZcz 11377   Basecbs 15857    /.s cqus 16165   ~QG cqg 17590   Ringcrg 18547  RSpancrsp 19171  ℤringzring 19818   ZRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  zncyg  19897  znf1o  19900  zzngim  19901  znfld  19909  znunit  19912  znrrg  19914  cygznlem2a  19916  cygznlem3  19918  dchrelbas4  24968  dchrzrhcl  24970  lgsdchrval  25079  lgsdchr  25080  rpvmasumlem  25176  dchrmusum2  25183  dchrvmasumlem3  25188  dchrisum0ff  25196  dchrisum0flblem1  25197  rpvmasum2  25201  dchrisum0re  25202  dchrisum0lem2a  25206  dirith  25218
  Copyright terms: Public domain W3C validator