MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdirprm Structured version   Visualization version   Unicode version

Theorem lgsdirprm 25056
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdirprm  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )

Proof of Theorem lgsdirprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  A  e.  ZZ )
2 simpl2 1065 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  B  e.  ZZ )
3 lgsdir2 25055 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
41, 2, 3syl2anc 693 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
5 simpr 477 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  P  =  2 )
65oveq2d 6666 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  x.  B )  /L 2 ) )
75oveq2d 6666 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( A  /L P )  =  ( A  /L 2 ) )
85oveq2d 6666 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( B  /L P )  =  ( B  /L 2 ) )
97, 8oveq12d 6668 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  /L P )  x.  ( B  /L P ) )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
104, 6, 93eqtr4d 2666 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L
P ) ) )
11 simpl1 1064 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  ZZ )
12 simpl2 1065 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  ZZ )
1311, 12zmulcld 11488 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  x.  B
)  e.  ZZ )
14 simpl3 1066 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  Prime )
15 prmz 15389 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1614, 15syl 17 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ZZ )
17 lgscl 25036 . . . . 5  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  x.  B )  /L
P )  e.  ZZ )
1813, 16, 17syl2anc 693 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  ZZ )
1918zcnd 11483 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  CC )
20 lgscl 25036 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
2111, 16, 20syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  ZZ )
22 lgscl 25036 . . . . . 6  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  ZZ )
2312, 16, 22syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  ZZ )
2421, 23zmulcld 11488 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )
2524zcnd 11483 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  CC )
2619, 25subcld 10392 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  CC )
2726abscld 14175 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  RR )
28 prmnn 15388 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
2914, 28syl 17 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  NN )
3029nnrpd 11870 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  RR+ )
3126absge0d 14183 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
32 2re 11090 . . . . . . . 8  |-  2  e.  RR
3332a1i 11 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  e.  RR )
3429nnred 11035 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  RR )
3519abscld 14175 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  e.  RR )
3625abscld 14175 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  RR )
3735, 36readdcld 10069 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  RR )
3819, 25abs2dif2d 14197 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
39 1red 10055 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
1  e.  RR )
40 lgsle1 25037 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
4113, 16, 40syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
42 eqid 2622 . . . . . . . . . . . . . 14  |-  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }
4342lgscl2 25034 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4411, 16, 43syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4542lgscl2 25034 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4612, 16, 45syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4742lgslem3 25024 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }  /\  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)  ->  ( ( A  /L P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } )
4844, 46, 47syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e. 
{ x  e.  ZZ  |  ( abs `  x
)  <_  1 }
)
49 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( abs `  x
)  =  ( abs `  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )
5049breq1d 4663 . . . . . . . . . . . . 13  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( ( abs `  x )  <_  1  <->  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1
) )
5150elrab 3363 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } 
<->  ( ( ( A  /L P )  x.  ( B  /L P ) )  e.  ZZ  /\  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1 ) )
5251simprbi 480 . . . . . . . . . . 11  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  ->  ( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5348, 52syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5435, 36, 39, 39, 41, 53le2addd 10646 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
( 1  +  1 ) )
55 df-2 11079 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
5654, 55syl6breqr 4695 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
5727, 37, 33, 38, 56letrd 10194 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
58 prmuz2 15408 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
59 eluzle 11700 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
6014, 58, 593syl 18 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <_  P )
61 simpr 477 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  =/=  2 )
62 ltlen 10138 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  P  e.  RR )  ->  ( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
6332, 34, 62sylancr 695 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
6460, 61, 63mpbir2and 957 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <  P )
6527, 33, 34, 57, 64lelttrd 10195 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  < 
P )
66 modid 12695 . . . . . 6  |-  ( ( ( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  RR  /\  P  e.  RR+ )  /\  (
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  /\  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  <  P ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
6727, 30, 31, 65, 66syl22anc 1327 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
6811zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  CC )
6912zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  CC )
70 eldifsn 4317 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
7114, 61, 70sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ( Prime  \  { 2 } ) )
72 oddprm 15515 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
7371, 72syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
7473nnnn0d 11351 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
7568, 69, 74mulexpd 13023 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( A ^ ( ( P  -  1 )  /  2 ) )  x.  ( B ^
( ( P  - 
1 )  /  2
) ) ) )
76 zexpcl 12875 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
7711, 74, 76syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
7877zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  CC )
79 zexpcl 12875 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8012, 74, 79syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8180zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  CC )
8278, 81mulcomd 10061 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) ) )
8375, 82eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( B ^ ( ( P  -  1 )  /  2 ) )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) ) )
8483oveq1d 6665 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B ) ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( ( B ^ (
( P  -  1 )  /  2 ) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
85 lgsvalmod 25041 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  x.  B
)  /L P )  mod  P )  =  ( ( ( A  x.  B ) ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
8613, 71, 85syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
8721zred 11482 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  RR )
8877zred 11482 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  RR )
89 lgsvalmod 25041 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
9011, 71, 89syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  mod 
P )  =  ( ( A ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
91 modmul1 12723 . . . . . . . . . . 11  |-  ( ( ( ( A  /L P )  e.  RR  /\  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )  /\  (
( B  /L
P )  e.  ZZ  /\  P  e.  RR+ )  /\  ( ( A  /L P )  mod 
P )  =  ( ( A ^ (
( P  -  1 )  /  2 ) )  mod  P ) )  ->  ( (
( A  /L
P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  x.  ( B  /L P ) )  mod  P ) )
9287, 88, 23, 30, 90, 91syl221anc 1337 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P ) )
9323zcnd 11483 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  CC )
9478, 93mulcomd 10061 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B  /L P ) )  =  ( ( B  /L P )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) ) )
9594oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P )  =  ( ( ( B  /L P )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
9623zred 11482 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  RR )
9780zred 11482 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  RR )
98 lgsvalmod 25041 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( B  /L P )  mod  P )  =  ( ( B ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
9912, 71, 98syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( B  /L P )  mod 
P )  =  ( ( B ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
100 modmul1 12723 . . . . . . . . . . . 12  |-  ( ( ( ( B  /L P )  e.  RR  /\  ( B ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ  /\  P  e.  RR+ )  /\  ( ( B  /L P )  mod 
P )  =  ( ( B ^ (
( P  -  1 )  /  2 ) )  mod  P ) )  ->  ( (
( B  /L
P )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P )  =  ( ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
10196, 97, 77, 30, 99, 100syl221anc 1337 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( B  /L P )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) )  mod 
P )  =  ( ( ( B ^
( ( P  - 
1 )  /  2
) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
10295, 101eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P )  =  ( ( ( B ^
( ( P  - 
1 )  /  2
) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
10392, 102eqtrd 2656 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
10484, 86, 1033eqtr4d 2666 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P ) )
105 moddvds 14991 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( ( A  x.  B )  /L
P )  e.  ZZ  /\  ( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )  ->  (
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
10629, 18, 24, 105syl3anc 1326 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( ( A  x.  B )  /L P )  mod  P )  =  ( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
107104, 106mpbid 222 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )
10818, 24zsubcld 11487 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )
109 dvdsabsb 15001 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
11016, 108, 109syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
111107, 110mpbid 222 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
112 nn0abscl 14052 . . . . . . . . 9  |-  ( ( ( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  ZZ  ->  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e. 
NN0 )
113108, 112syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e. 
NN0 )
114113nn0zd 11480 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  ZZ )
115 dvdsval3 14987 . . . . . . 7  |-  ( ( P  e.  NN  /\  ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  ZZ )  ->  ( P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  0 ) )
11629, 114, 115syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  0 ) )
117111, 116mpbid 222 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  0 )
11867, 117eqtr3d 2658 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  =  0 )
11926, 118abs00d 14185 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  =  0 )
12019, 25, 119subeq0d 10400 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  =  ( ( A  /L
P )  x.  ( B  /L P ) ) )
12110, 120pm2.61dane 2881 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    mod cmo 12668   ^cexp 12860   abscabs 13974    || cdvds 14983   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  lgsdir  25057
  Copyright terms: Public domain W3C validator