Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem30 Structured version   Visualization version   Unicode version

Theorem mapdpglem30 36991
Description: Lemma for mapdpg 36995. Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 36990, using lvecindp2 19139) that v = 1 and v = u...". TODO: would it be shorter to have only the  v  =  ( 1r `  A ) part and use mapdpglem28.u2 in mapdpglem31 36992? (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h  |-  H  =  ( LHyp `  K
)
mapdpg.m  |-  M  =  ( (mapd `  K
) `  W )
mapdpg.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdpg.v  |-  V  =  ( Base `  U
)
mapdpg.s  |-  .-  =  ( -g `  U )
mapdpg.z  |-  .0.  =  ( 0g `  U )
mapdpg.n  |-  N  =  ( LSpan `  U )
mapdpg.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdpg.f  |-  F  =  ( Base `  C
)
mapdpg.r  |-  R  =  ( -g `  C
)
mapdpg.j  |-  J  =  ( LSpan `  C )
mapdpg.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdpg.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdpg.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdpg.g  |-  ( ph  ->  G  e.  F )
mapdpg.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
mapdpg.e  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
mapdpgem25.h1  |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) ) )
mapdpgem25.i1  |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )
mapdpglem26.a  |-  A  =  (Scalar `  U )
mapdpglem26.b  |-  B  =  ( Base `  A
)
mapdpglem26.t  |-  .x.  =  ( .s `  C )
mapdpglem26.o  |-  O  =  ( 0g `  A
)
mapdpglem28.ve  |-  ( ph  ->  v  e.  B )
mapdpglem28.u1  |-  ( ph  ->  h  =  ( u 
.x.  i ) )
mapdpglem28.u2  |-  ( ph  ->  ( G R h )  =  ( v 
.x.  ( G R i ) ) )
mapdpglem28.ue  |-  ( ph  ->  u  e.  B )
Assertion
Ref Expression
mapdpglem30  |-  ( ph  ->  ( v  =  ( 1r `  A )  /\  v  =  u ) )
Distinct variable groups:    h, i, u, v    u, B, v   
u, C, v    u, O, v    u,  .x. , v    v, G    v, R
Allowed substitution hints:    ph( v, u, h, i)    A( v, u, h, i)    B( h, i)    C( h, i)    R( u, h, i)    .x. ( h, i)    U( v, u, h, i)    F( v, u, h, i)    G( u, h, i)    H( v, u, h, i)    J( v, u, h, i)    K( v, u, h, i)    M( v, u, h, i)    .- ( v, u, h, i)    N( v, u, h, i)    O( h, i)    V( v, u, h, i)    W( v, u, h, i)    X( v, u, h, i)    Y( v, u, h, i)    .0. ( v, u, h, i)

Proof of Theorem mapdpglem30
StepHypRef Expression
1 mapdpg.f . . 3  |-  F  =  ( Base `  C
)
2 eqid 2622 . . 3  |-  ( +g  `  C )  =  ( +g  `  C )
3 eqid 2622 . . 3  |-  (Scalar `  C )  =  (Scalar `  C )
4 eqid 2622 . . 3  |-  ( Base `  (Scalar `  C )
)  =  ( Base `  (Scalar `  C )
)
5 mapdpglem26.t . . 3  |-  .x.  =  ( .s `  C )
6 eqid 2622 . . 3  |-  ( 0g
`  C )  =  ( 0g `  C
)
7 mapdpg.j . . 3  |-  J  =  ( LSpan `  C )
8 mapdpg.h . . . 4  |-  H  =  ( LHyp `  K
)
9 mapdpg.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
10 mapdpg.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
118, 9, 10lcdlvec 36880 . . 3  |-  ( ph  ->  C  e.  LVec )
12 mapdpg.g . . . 4  |-  ( ph  ->  G  e.  F )
13 mapdpg.m . . . . 5  |-  M  =  ( (mapd `  K
) `  W )
14 mapdpg.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
15 mapdpg.v . . . . 5  |-  V  =  ( Base `  U
)
16 mapdpg.s . . . . 5  |-  .-  =  ( -g `  U )
17 mapdpg.z . . . . 5  |-  .0.  =  ( 0g `  U )
18 mapdpg.n . . . . 5  |-  N  =  ( LSpan `  U )
19 mapdpg.r . . . . 5  |-  R  =  ( -g `  C
)
20 mapdpg.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
21 mapdpg.y . . . . 5  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
22 mapdpg.ne . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
23 mapdpg.e . . . . 5  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
248, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23mapdpglem30a 36984 . . . 4  |-  ( ph  ->  G  =/=  ( 0g
`  C ) )
25 eldifsn 4317 . . . 4  |-  ( G  e.  ( F  \  { ( 0g `  C ) } )  <-> 
( G  e.  F  /\  G  =/=  ( 0g `  C ) ) )
2612, 24, 25sylanbrc 698 . . 3  |-  ( ph  ->  G  e.  ( F 
\  { ( 0g
`  C ) } ) )
27 mapdpgem25.i1 . . . . 5  |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )
2827simpld 475 . . . 4  |-  ( ph  ->  i  e.  F )
29 mapdpgem25.h1 . . . . 5  |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) ) )
308, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27mapdpglem30b 36985 . . . 4  |-  ( ph  ->  i  =/=  ( 0g
`  C ) )
31 eldifsn 4317 . . . 4  |-  ( i  e.  ( F  \  { ( 0g `  C ) } )  <-> 
( i  e.  F  /\  i  =/=  ( 0g `  C ) ) )
3228, 30, 31sylanbrc 698 . . 3  |-  ( ph  ->  i  e.  ( F 
\  { ( 0g
`  C ) } ) )
33 mapdpglem28.ve . . . 4  |-  ( ph  ->  v  e.  B )
34 mapdpglem26.a . . . . 5  |-  A  =  (Scalar `  U )
35 mapdpglem26.b . . . . 5  |-  B  =  ( Base `  A
)
368, 14, 34, 35, 9, 3, 4, 10lcdsbase 36889 . . . 4  |-  ( ph  ->  ( Base `  (Scalar `  C ) )  =  B )
3733, 36eleqtrrd 2704 . . 3  |-  ( ph  ->  v  e.  ( Base `  (Scalar `  C )
) )
388, 14, 10dvhlmod 36399 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
3934lmodring 18871 . . . . . 6  |-  ( U  e.  LMod  ->  A  e. 
Ring )
4038, 39syl 17 . . . . 5  |-  ( ph  ->  A  e.  Ring )
41 ringgrp 18552 . . . . . . 7  |-  ( A  e.  Ring  ->  A  e. 
Grp )
4240, 41syl 17 . . . . . 6  |-  ( ph  ->  A  e.  Grp )
43 eqid 2622 . . . . . . . 8  |-  ( 1r
`  A )  =  ( 1r `  A
)
4435, 43ringidcl 18568 . . . . . . 7  |-  ( A  e.  Ring  ->  ( 1r
`  A )  e.  B )
4540, 44syl 17 . . . . . 6  |-  ( ph  ->  ( 1r `  A
)  e.  B )
46 eqid 2622 . . . . . . 7  |-  ( invg `  A )  =  ( invg `  A )
4735, 46grpinvcl 17467 . . . . . 6  |-  ( ( A  e.  Grp  /\  ( 1r `  A )  e.  B )  -> 
( ( invg `  A ) `  ( 1r `  A ) )  e.  B )
4842, 45, 47syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( invg `  A ) `  ( 1r `  A ) )  e.  B )
49 eqid 2622 . . . . . 6  |-  ( .r
`  A )  =  ( .r `  A
)
5035, 49ringcl 18561 . . . . 5  |-  ( ( A  e.  Ring  /\  v  e.  B  /\  (
( invg `  A ) `  ( 1r `  A ) )  e.  B )  -> 
( v ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  e.  B )
5140, 33, 48, 50syl3anc 1326 . . . 4  |-  ( ph  ->  ( v ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  e.  B )
5251, 36eleqtrrd 2704 . . 3  |-  ( ph  ->  ( v ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  e.  ( Base `  (Scalar `  C )
) )
5345, 36eleqtrrd 2704 . . 3  |-  ( ph  ->  ( 1r `  A
)  e.  ( Base `  (Scalar `  C )
) )
54 mapdpglem28.ue . . . . 5  |-  ( ph  ->  u  e.  B )
5535, 49ringcl 18561 . . . . 5  |-  ( ( A  e.  Ring  /\  u  e.  B  /\  (
( invg `  A ) `  ( 1r `  A ) )  e.  B )  -> 
( u ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  e.  B )
5640, 54, 48, 55syl3anc 1326 . . . 4  |-  ( ph  ->  ( u ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  e.  B )
5756, 36eleqtrrd 2704 . . 3  |-  ( ph  ->  ( u ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  e.  ( Base `  (Scalar `  C )
) )
58 mapdpglem26.o . . . 4  |-  O  =  ( 0g `  A
)
59 mapdpglem28.u1 . . . 4  |-  ( ph  ->  h  =  ( u 
.x.  i ) )
60 mapdpglem28.u2 . . . 4  |-  ( ph  ->  ( G R h )  =  ( v 
.x.  ( G R i ) ) )
618, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem29 36989 . . 3  |-  ( ph  ->  ( J `  { G } )  =/=  ( J `  { i } ) )
628, 14, 34, 35, 49, 9, 1, 5, 10, 48, 54, 28lcdvsass 36896 . . . . 5  |-  ( ph  ->  ( ( u ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  .x.  i )  =  ( ( ( invg `  A
) `  ( 1r `  A ) )  .x.  ( u  .x.  i ) ) )
6362oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( ( 1r
`  A )  .x.  G ) ( +g  `  C ) ( ( u ( .r `  A ) ( ( invg `  A
) `  ( 1r `  A ) ) ) 
.x.  i ) )  =  ( ( ( 1r `  A ) 
.x.  G ) ( +g  `  C ) ( ( ( invg `  A ) `
 ( 1r `  A ) )  .x.  ( u  .x.  i ) ) ) )
648, 14, 34, 35, 9, 1, 5, 10, 45, 12lcdvscl 36894 . . . . 5  |-  ( ph  ->  ( ( 1r `  A )  .x.  G
)  e.  F )
658, 14, 34, 35, 9, 1, 5, 10, 54, 28lcdvscl 36894 . . . . 5  |-  ( ph  ->  ( u  .x.  i
)  e.  F )
668, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 64, 65lcdvsub 36906 . . . 4  |-  ( ph  ->  ( ( ( 1r
`  A )  .x.  G ) R ( u  .x.  i ) )  =  ( ( ( 1r `  A
)  .x.  G )
( +g  `  C ) ( ( ( invg `  A ) `
 ( 1r `  A ) )  .x.  ( u  .x.  i ) ) ) )
678, 14, 34, 35, 49, 9, 1, 5, 10, 48, 33, 28lcdvsass 36896 . . . . . 6  |-  ( ph  ->  ( ( v ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  .x.  i )  =  ( ( ( invg `  A
) `  ( 1r `  A ) )  .x.  ( v  .x.  i
) ) )
6867oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( v  .x.  G ) ( +g  `  C ) ( ( v ( .r `  A ) ( ( invg `  A
) `  ( 1r `  A ) ) ) 
.x.  i ) )  =  ( ( v 
.x.  G ) ( +g  `  C ) ( ( ( invg `  A ) `
 ( 1r `  A ) )  .x.  ( v  .x.  i
) ) ) )
698, 14, 34, 35, 9, 1, 5, 10, 33, 12lcdvscl 36894 . . . . . 6  |-  ( ph  ->  ( v  .x.  G
)  e.  F )
708, 14, 34, 35, 9, 1, 5, 10, 33, 28lcdvscl 36894 . . . . . 6  |-  ( ph  ->  ( v  .x.  i
)  e.  F )
718, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 69, 70lcdvsub 36906 . . . . 5  |-  ( ph  ->  ( ( v  .x.  G ) R ( v  .x.  i ) )  =  ( ( v  .x.  G ) ( +g  `  C
) ( ( ( invg `  A
) `  ( 1r `  A ) )  .x.  ( v  .x.  i
) ) ) )
728, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem28 36990 . . . . . 6  |-  ( ph  ->  ( ( v  .x.  G ) R ( v  .x.  i ) )  =  ( G R ( u  .x.  i ) ) )
73 eqid 2622 . . . . . . . . . 10  |-  ( 1r
`  (Scalar `  C )
)  =  ( 1r
`  (Scalar `  C )
)
748, 14, 34, 43, 9, 3, 73, 10lcd1 36898 . . . . . . . . 9  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  =  ( 1r `  A
) )
7574oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( 1r `  (Scalar `  C ) ) 
.x.  G )  =  ( ( 1r `  A )  .x.  G
) )
768, 9, 10lcdlmod 36881 . . . . . . . . 9  |-  ( ph  ->  C  e.  LMod )
771, 3, 5, 73lmodvs1 18891 . . . . . . . . 9  |-  ( ( C  e.  LMod  /\  G  e.  F )  ->  (
( 1r `  (Scalar `  C ) )  .x.  G )  =  G )
7876, 12, 77syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( 1r `  (Scalar `  C ) ) 
.x.  G )  =  G )
7975, 78eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  ( ( 1r `  A )  .x.  G
)  =  G )
8079oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( 1r
`  A )  .x.  G ) R ( u  .x.  i ) )  =  ( G R ( u  .x.  i ) ) )
8172, 80eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( ( v  .x.  G ) R ( v  .x.  i ) )  =  ( ( ( 1r `  A
)  .x.  G ) R ( u  .x.  i ) ) )
8268, 71, 813eqtr2rd 2663 . . . 4  |-  ( ph  ->  ( ( ( 1r
`  A )  .x.  G ) R ( u  .x.  i ) )  =  ( ( v  .x.  G ) ( +g  `  C
) ( ( v ( .r `  A
) ( ( invg `  A ) `
 ( 1r `  A ) ) ) 
.x.  i ) ) )
8363, 66, 823eqtr2rd 2663 . . 3  |-  ( ph  ->  ( ( v  .x.  G ) ( +g  `  C ) ( ( v ( .r `  A ) ( ( invg `  A
) `  ( 1r `  A ) ) ) 
.x.  i ) )  =  ( ( ( 1r `  A ) 
.x.  G ) ( +g  `  C ) ( ( u ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  .x.  i ) ) )
841, 2, 3, 4, 5, 6, 7, 11, 26, 32, 37, 52, 53, 57, 61, 83lvecindp2 19139 . 2  |-  ( ph  ->  ( v  =  ( 1r `  A )  /\  ( v ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  =  ( u ( .r `  A
) ( ( invg `  A ) `
 ( 1r `  A ) ) ) ) )
8535, 49, 43, 46, 40, 33rngnegr 18595 . . . . 5  |-  ( ph  ->  ( v ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  =  ( ( invg `  A
) `  v )
)
8635, 49, 43, 46, 40, 54rngnegr 18595 . . . . 5  |-  ( ph  ->  ( u ( .r
`  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  =  ( ( invg `  A
) `  u )
)
8785, 86eqeq12d 2637 . . . 4  |-  ( ph  ->  ( ( v ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  =  ( u ( .r `  A
) ( ( invg `  A ) `
 ( 1r `  A ) ) )  <-> 
( ( invg `  A ) `  v
)  =  ( ( invg `  A
) `  u )
) )
8835, 46, 42, 33, 54grpinv11 17484 . . . 4  |-  ( ph  ->  ( ( ( invg `  A ) `
 v )  =  ( ( invg `  A ) `  u
)  <->  v  =  u ) )
8987, 88bitrd 268 . . 3  |-  ( ph  ->  ( ( v ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) )  =  ( u ( .r `  A
) ( ( invg `  A ) `
 ( 1r `  A ) ) )  <-> 
v  =  u ) )
9089anbi2d 740 . 2  |-  ( ph  ->  ( ( v  =  ( 1r `  A
)  /\  ( v
( .r `  A
) ( ( invg `  A ) `
 ( 1r `  A ) ) )  =  ( u ( .r `  A ) ( ( invg `  A ) `  ( 1r `  A ) ) ) )  <->  ( v  =  ( 1r `  A )  /\  v  =  u ) ) )
9184, 90mpbid 222 1  |-  ( ph  ->  ( v  =  ( 1r `  A )  /\  v  =  u ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   1rcur 18501   Ringcrg 18547   LModclmod 18863   LSpanclspn 18971   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914
This theorem is referenced by:  mapdpglem31  36992
  Copyright terms: Public domain W3C validator