| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem30 | Structured version Visualization version Unicode version | ||
| Description: Lemma for mapdpg 36995. Baer p. 45 line 18: "Hence we deduce
(from
mapdpglem28 36990, using lvecindp2 19139) that v = 1 and v = u...". TODO:
would it be shorter to have only the |
| Ref | Expression |
|---|---|
| mapdpg.h |
|
| mapdpg.m |
|
| mapdpg.u |
|
| mapdpg.v |
|
| mapdpg.s |
|
| mapdpg.z |
|
| mapdpg.n |
|
| mapdpg.c |
|
| mapdpg.f |
|
| mapdpg.r |
|
| mapdpg.j |
|
| mapdpg.k |
|
| mapdpg.x |
|
| mapdpg.y |
|
| mapdpg.g |
|
| mapdpg.ne |
|
| mapdpg.e |
|
| mapdpgem25.h1 |
|
| mapdpgem25.i1 |
|
| mapdpglem26.a |
|
| mapdpglem26.b |
|
| mapdpglem26.t |
|
| mapdpglem26.o |
|
| mapdpglem28.ve |
|
| mapdpglem28.u1 |
|
| mapdpglem28.u2 |
|
| mapdpglem28.ue |
|
| Ref | Expression |
|---|---|
| mapdpglem30 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpg.f |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | eqid 2622 |
. . 3
| |
| 4 | eqid 2622 |
. . 3
| |
| 5 | mapdpglem26.t |
. . 3
| |
| 6 | eqid 2622 |
. . 3
| |
| 7 | mapdpg.j |
. . 3
| |
| 8 | mapdpg.h |
. . . 4
| |
| 9 | mapdpg.c |
. . . 4
| |
| 10 | mapdpg.k |
. . . 4
| |
| 11 | 8, 9, 10 | lcdlvec 36880 |
. . 3
|
| 12 | mapdpg.g |
. . . 4
| |
| 13 | mapdpg.m |
. . . . 5
| |
| 14 | mapdpg.u |
. . . . 5
| |
| 15 | mapdpg.v |
. . . . 5
| |
| 16 | mapdpg.s |
. . . . 5
| |
| 17 | mapdpg.z |
. . . . 5
| |
| 18 | mapdpg.n |
. . . . 5
| |
| 19 | mapdpg.r |
. . . . 5
| |
| 20 | mapdpg.x |
. . . . 5
| |
| 21 | mapdpg.y |
. . . . 5
| |
| 22 | mapdpg.ne |
. . . . 5
| |
| 23 | mapdpg.e |
. . . . 5
| |
| 24 | 8, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23 | mapdpglem30a 36984 |
. . . 4
|
| 25 | eldifsn 4317 |
. . . 4
| |
| 26 | 12, 24, 25 | sylanbrc 698 |
. . 3
|
| 27 | mapdpgem25.i1 |
. . . . 5
| |
| 28 | 27 | simpld 475 |
. . . 4
|
| 29 | mapdpgem25.h1 |
. . . . 5
| |
| 30 | 8, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27 | mapdpglem30b 36985 |
. . . 4
|
| 31 | eldifsn 4317 |
. . . 4
| |
| 32 | 28, 30, 31 | sylanbrc 698 |
. . 3
|
| 33 | mapdpglem28.ve |
. . . 4
| |
| 34 | mapdpglem26.a |
. . . . 5
| |
| 35 | mapdpglem26.b |
. . . . 5
| |
| 36 | 8, 14, 34, 35, 9, 3, 4, 10 | lcdsbase 36889 |
. . . 4
|
| 37 | 33, 36 | eleqtrrd 2704 |
. . 3
|
| 38 | 8, 14, 10 | dvhlmod 36399 |
. . . . . 6
|
| 39 | 34 | lmodring 18871 |
. . . . . 6
|
| 40 | 38, 39 | syl 17 |
. . . . 5
|
| 41 | ringgrp 18552 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 17 |
. . . . . 6
|
| 43 | eqid 2622 |
. . . . . . . 8
| |
| 44 | 35, 43 | ringidcl 18568 |
. . . . . . 7
|
| 45 | 40, 44 | syl 17 |
. . . . . 6
|
| 46 | eqid 2622 |
. . . . . . 7
| |
| 47 | 35, 46 | grpinvcl 17467 |
. . . . . 6
|
| 48 | 42, 45, 47 | syl2anc 693 |
. . . . 5
|
| 49 | eqid 2622 |
. . . . . 6
| |
| 50 | 35, 49 | ringcl 18561 |
. . . . 5
|
| 51 | 40, 33, 48, 50 | syl3anc 1326 |
. . . 4
|
| 52 | 51, 36 | eleqtrrd 2704 |
. . 3
|
| 53 | 45, 36 | eleqtrrd 2704 |
. . 3
|
| 54 | mapdpglem28.ue |
. . . . 5
| |
| 55 | 35, 49 | ringcl 18561 |
. . . . 5
|
| 56 | 40, 54, 48, 55 | syl3anc 1326 |
. . . 4
|
| 57 | 56, 36 | eleqtrrd 2704 |
. . 3
|
| 58 | mapdpglem26.o |
. . . 4
| |
| 59 | mapdpglem28.u1 |
. . . 4
| |
| 60 | mapdpglem28.u2 |
. . . 4
| |
| 61 | 8, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60 | mapdpglem29 36989 |
. . 3
|
| 62 | 8, 14, 34, 35, 49, 9, 1, 5, 10, 48, 54, 28 | lcdvsass 36896 |
. . . . 5
|
| 63 | 62 | oveq2d 6666 |
. . . 4
|
| 64 | 8, 14, 34, 35, 9, 1, 5, 10, 45, 12 | lcdvscl 36894 |
. . . . 5
|
| 65 | 8, 14, 34, 35, 9, 1, 5, 10, 54, 28 | lcdvscl 36894 |
. . . . 5
|
| 66 | 8, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 64, 65 | lcdvsub 36906 |
. . . 4
|
| 67 | 8, 14, 34, 35, 49, 9, 1, 5, 10, 48, 33, 28 | lcdvsass 36896 |
. . . . . 6
|
| 68 | 67 | oveq2d 6666 |
. . . . 5
|
| 69 | 8, 14, 34, 35, 9, 1, 5, 10, 33, 12 | lcdvscl 36894 |
. . . . . 6
|
| 70 | 8, 14, 34, 35, 9, 1, 5, 10, 33, 28 | lcdvscl 36894 |
. . . . . 6
|
| 71 | 8, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 69, 70 | lcdvsub 36906 |
. . . . 5
|
| 72 | 8, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60 | mapdpglem28 36990 |
. . . . . 6
|
| 73 | eqid 2622 |
. . . . . . . . . 10
| |
| 74 | 8, 14, 34, 43, 9, 3, 73, 10 | lcd1 36898 |
. . . . . . . . 9
|
| 75 | 74 | oveq1d 6665 |
. . . . . . . 8
|
| 76 | 8, 9, 10 | lcdlmod 36881 |
. . . . . . . . 9
|
| 77 | 1, 3, 5, 73 | lmodvs1 18891 |
. . . . . . . . 9
|
| 78 | 76, 12, 77 | syl2anc 693 |
. . . . . . . 8
|
| 79 | 75, 78 | eqtr3d 2658 |
. . . . . . 7
|
| 80 | 79 | oveq1d 6665 |
. . . . . 6
|
| 81 | 72, 80 | eqtr4d 2659 |
. . . . 5
|
| 82 | 68, 71, 81 | 3eqtr2rd 2663 |
. . . 4
|
| 83 | 63, 66, 82 | 3eqtr2rd 2663 |
. . 3
|
| 84 | 1, 2, 3, 4, 5, 6, 7, 11, 26, 32, 37, 52, 53, 57, 61, 83 | lvecindp2 19139 |
. 2
|
| 85 | 35, 49, 43, 46, 40, 33 | rngnegr 18595 |
. . . . 5
|
| 86 | 35, 49, 43, 46, 40, 54 | rngnegr 18595 |
. . . . 5
|
| 87 | 85, 86 | eqeq12d 2637 |
. . . 4
|
| 88 | 35, 46, 42, 33, 54 | grpinv11 17484 |
. . . 4
|
| 89 | 87, 88 | bitrd 268 |
. . 3
|
| 90 | 89 | anbi2d 740 |
. 2
|
| 91 | 84, 90 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lcv 34306 df-lfl 34345 df-lkr 34373 df-ldual 34411 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 df-lcdual 36876 df-mapd 36914 |
| This theorem is referenced by: mapdpglem31 36992 |
| Copyright terms: Public domain | W3C validator |