MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmcn Structured version   Visualization version   Unicode version

Theorem nghmcn 22549
Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nghmcn.j  |-  J  =  ( TopOpen `  S )
nghmcn.k  |-  K  =  ( TopOpen `  T )
Assertion
Ref Expression
nghmcn  |-  ( F  e.  ( S NGHom  T
)  ->  F  e.  ( J  Cn  K
) )

Proof of Theorem nghmcn
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nghmghm 22538 . . . 4  |-  ( F  e.  ( S NGHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
2 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2622 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
42, 3ghmf 17664 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
51, 4syl 17 . . 3  |-  ( F  e.  ( S NGHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
6 simprr 796 . . . . . 6  |-  ( ( F  e.  ( S NGHom 
T )  /\  (
x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  -> 
r  e.  RR+ )
7 eqid 2622 . . . . . . . . 9  |-  ( S
normOp T )  =  ( S normOp T )
87nghmcl 22531 . . . . . . . 8  |-  ( F  e.  ( S NGHom  T
)  ->  ( ( S normOp T ) `  F )  e.  RR )
9 nghmrcl1 22536 . . . . . . . . 9  |-  ( F  e.  ( S NGHom  T
)  ->  S  e. NrmGrp )
10 nghmrcl2 22537 . . . . . . . . 9  |-  ( F  e.  ( S NGHom  T
)  ->  T  e. NrmGrp )
117nmoge0 22525 . . . . . . . . 9  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  0  <_  (
( S normOp T ) `
 F ) )
129, 10, 1, 11syl3anc 1326 . . . . . . . 8  |-  ( F  e.  ( S NGHom  T
)  ->  0  <_  ( ( S normOp T ) `
 F ) )
138, 12ge0p1rpd 11902 . . . . . . 7  |-  ( F  e.  ( S NGHom  T
)  ->  ( (
( S normOp T ) `
 F )  +  1 )  e.  RR+ )
1413adantr 481 . . . . . 6  |-  ( ( F  e.  ( S NGHom 
T )  /\  (
x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  -> 
( ( ( S
normOp T ) `  F
)  +  1 )  e.  RR+ )
156, 14rpdivcld 11889 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  (
x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  -> 
( r  /  (
( ( S normOp T ) `  F )  +  1 ) )  e.  RR+ )
16 ngpms 22404 . . . . . . . . . . . 12  |-  ( S  e. NrmGrp  ->  S  e.  MetSp )
179, 16syl 17 . . . . . . . . . . 11  |-  ( F  e.  ( S NGHom  T
)  ->  S  e.  MetSp
)
1817ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  S  e.  MetSp
)
19 simplrl 800 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  x  e.  ( Base `  S )
)
20 simpr 477 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  y  e.  ( Base `  S )
)
21 eqid 2622 . . . . . . . . . . 11  |-  ( dist `  S )  =  (
dist `  S )
222, 21mscl 22266 . . . . . . . . . 10  |-  ( ( S  e.  MetSp  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( x
( dist `  S )
y )  e.  RR )
2318, 19, 20, 22syl3anc 1326 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( x
( dist `  S )
y )  e.  RR )
246adantr 481 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  r  e.  RR+ )
2524rpred 11872 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  r  e.  RR )
2613ad2antrr 762 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( S normOp T ) `
 F )  +  1 )  e.  RR+ )
2723, 25, 26ltmuldiv2d 11920 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( ( ( S
normOp T ) `  F
)  +  1 )  x.  ( x (
dist `  S )
y ) )  < 
r  <->  ( x (
dist `  S )
y )  <  (
r  /  ( ( ( S normOp T ) `
 F )  +  1 ) ) ) )
28 ngpms 22404 . . . . . . . . . . . . 13  |-  ( T  e. NrmGrp  ->  T  e.  MetSp )
2910, 28syl 17 . . . . . . . . . . . 12  |-  ( F  e.  ( S NGHom  T
)  ->  T  e.  MetSp
)
3029ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  T  e.  MetSp
)
315ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
3231, 19ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( F `  x )  e.  (
Base `  T )
)
3331, 20ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( F `  y )  e.  (
Base `  T )
)
34 eqid 2622 . . . . . . . . . . . 12  |-  ( dist `  T )  =  (
dist `  T )
353, 34mscl 22266 . . . . . . . . . . 11  |-  ( ( T  e.  MetSp  /\  ( F `  x )  e.  ( Base `  T
)  /\  ( F `  y )  e.  (
Base `  T )
)  ->  ( ( F `  x )
( dist `  T )
( F `  y
) )  e.  RR )
3630, 32, 33, 35syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( ( F `  x )
( dist `  T )
( F `  y
) )  e.  RR )
378ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( ( S normOp T ) `  F )  e.  RR )
3837, 23remulcld 10070 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( S normOp T ) `
 F )  x.  ( x ( dist `  S ) y ) )  e.  RR )
3926rpred 11872 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( S normOp T ) `
 F )  +  1 )  e.  RR )
4039, 23remulcld 10070 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( ( S normOp T ) `  F )  +  1 )  x.  ( x ( dist `  S ) y ) )  e.  RR )
417, 2, 21, 34nmods 22548 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S NGHom 
T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( ( F `  x )
( dist `  T )
( F `  y
) )  <_  (
( ( S normOp T ) `  F )  x.  ( x (
dist `  S )
y ) ) )
42413expa 1265 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  x  e.  ( Base `  S ) )  /\  y  e.  ( Base `  S ) )  -> 
( ( F `  x ) ( dist `  T ) ( F `
 y ) )  <_  ( ( ( S normOp T ) `  F )  x.  (
x ( dist `  S
) y ) ) )
4342adantlrr 757 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( ( F `  x )
( dist `  T )
( F `  y
) )  <_  (
( ( S normOp T ) `  F )  x.  ( x (
dist `  S )
y ) ) )
44 msxms 22259 . . . . . . . . . . . . 13  |-  ( S  e.  MetSp  ->  S  e.  *MetSp )
4518, 44syl 17 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  S  e.  *MetSp )
462, 21xmsge0 22268 . . . . . . . . . . . 12  |-  ( ( S  e.  *MetSp  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  0  <_  ( x ( dist `  S ) y ) )
4745, 19, 20, 46syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  0  <_  ( x ( dist `  S
) y ) )
4837lep1d 10955 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( ( S normOp T ) `  F )  <_  (
( ( S normOp T ) `  F )  +  1 ) )
4937, 39, 23, 47, 48lemul1ad 10963 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( S normOp T ) `
 F )  x.  ( x ( dist `  S ) y ) )  <_  ( (
( ( S normOp T ) `  F )  +  1 )  x.  ( x ( dist `  S ) y ) ) )
5036, 38, 40, 43, 49letrd 10194 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( ( F `  x )
( dist `  T )
( F `  y
) )  <_  (
( ( ( S
normOp T ) `  F
)  +  1 )  x.  ( x (
dist `  S )
y ) ) )
51 lelttr 10128 . . . . . . . . . 10  |-  ( ( ( ( F `  x ) ( dist `  T ) ( F `
 y ) )  e.  RR  /\  (
( ( ( S
normOp T ) `  F
)  +  1 )  x.  ( x (
dist `  S )
y ) )  e.  RR  /\  r  e.  RR )  ->  (
( ( ( F `
 x ) (
dist `  T )
( F `  y
) )  <_  (
( ( ( S
normOp T ) `  F
)  +  1 )  x.  ( x (
dist `  S )
y ) )  /\  ( ( ( ( S normOp T ) `  F )  +  1 )  x.  ( x ( dist `  S
) y ) )  <  r )  -> 
( ( F `  x ) ( dist `  T ) ( F `
 y ) )  <  r ) )
5236, 40, 25, 51syl3anc 1326 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( ( F `  x ) ( dist `  T ) ( F `
 y ) )  <_  ( ( ( ( S normOp T ) `
 F )  +  1 )  x.  (
x ( dist `  S
) y ) )  /\  ( ( ( ( S normOp T ) `
 F )  +  1 )  x.  (
x ( dist `  S
) y ) )  <  r )  -> 
( ( F `  x ) ( dist `  T ) ( F `
 y ) )  <  r ) )
5350, 52mpand 711 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( ( ( S
normOp T ) `  F
)  +  1 )  x.  ( x (
dist `  S )
y ) )  < 
r  ->  ( ( F `  x )
( dist `  T )
( F `  y
) )  <  r
) )
5427, 53sylbird 250 . . . . . . 7  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
x ( dist `  S
) y )  < 
( r  /  (
( ( S normOp T ) `  F )  +  1 ) )  ->  ( ( F `
 x ) (
dist `  T )
( F `  y
) )  <  r
) )
5519, 20ovresd 6801 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( x
( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  =  ( x ( dist `  S ) y ) )
5655breq1d 4663 . . . . . . 7  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  ( r  /  ( ( ( S normOp T ) `  F )  +  1 ) )  <->  ( x
( dist `  S )
y )  <  (
r  /  ( ( ( S normOp T ) `
 F )  +  1 ) ) ) )
5732, 33ovresd 6801 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( ( F `  x )
( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  =  ( ( F `  x ) ( dist `  T ) ( F `
 y ) ) )
5857breq1d 4663 . . . . . . 7  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
( F `  x
) ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) ( F `  y ) )  <  r  <->  ( ( F `  x )
( dist `  T )
( F `  y
) )  <  r
) )
5954, 56, 583imtr4d 283 . . . . . 6  |-  ( ( ( F  e.  ( S NGHom  T )  /\  ( x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  /\  y  e.  (
Base `  S )
)  ->  ( (
x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  ( r  /  ( ( ( S normOp T ) `  F )  +  1 ) )  ->  (
( F `  x
) ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) ( F `  y ) )  <  r ) )
6059ralrimiva 2966 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  (
x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  ->  A. y  e.  ( Base `  S ) ( ( x ( (
dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) y )  <  (
r  /  ( ( ( S normOp T ) `
 F )  +  1 ) )  -> 
( ( F `  x ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  r
) )
61 breq2 4657 . . . . . . . 8  |-  ( s  =  ( r  / 
( ( ( S
normOp T ) `  F
)  +  1 ) )  ->  ( (
x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  s  <->  ( x
( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
( r  /  (
( ( S normOp T ) `  F )  +  1 ) ) ) )
6261imbi1d 331 . . . . . . 7  |-  ( s  =  ( r  / 
( ( ( S
normOp T ) `  F
)  +  1 ) )  ->  ( (
( x ( (
dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) y )  <  s  ->  ( ( F `  x ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  r
)  <->  ( ( x ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
( r  /  (
( ( S normOp T ) `  F )  +  1 ) )  ->  ( ( F `
 x ) ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  < 
r ) ) )
6362ralbidv 2986 . . . . . 6  |-  ( s  =  ( r  / 
( ( ( S
normOp T ) `  F
)  +  1 ) )  ->  ( A. y  e.  ( Base `  S ) ( ( x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  s  -> 
( ( F `  x ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  r
)  <->  A. y  e.  (
Base `  S )
( ( x ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
( r  /  (
( ( S normOp T ) `  F )  +  1 ) )  ->  ( ( F `
 x ) ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  < 
r ) ) )
6463rspcev 3309 . . . . 5  |-  ( ( ( r  /  (
( ( S normOp T ) `  F )  +  1 ) )  e.  RR+  /\  A. y  e.  ( Base `  S
) ( ( x ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
( r  /  (
( ( S normOp T ) `  F )  +  1 ) )  ->  ( ( F `
 x ) ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  < 
r ) )  ->  E. s  e.  RR+  A. y  e.  ( Base `  S
) ( ( x ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
s  ->  ( ( F `  x )
( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  < 
r ) )
6515, 60, 64syl2anc 693 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  (
x  e.  ( Base `  S )  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  ( Base `  S
) ( ( x ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
s  ->  ( ( F `  x )
( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  < 
r ) )
6665ralrimivva 2971 . . 3  |-  ( F  e.  ( S NGHom  T
)  ->  A. x  e.  ( Base `  S
) A. r  e.  RR+  E. s  e.  RR+  A. y  e.  ( Base `  S ) ( ( x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  s  -> 
( ( F `  x ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  r
) )
67 eqid 2622 . . . . . 6  |-  ( (
dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  =  ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) )
682, 67xmsxmet 22261 . . . . 5  |-  ( S  e.  *MetSp  ->  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S
) ) )
6917, 44, 683syl 18 . . . 4  |-  ( F  e.  ( S NGHom  T
)  ->  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S
) ) )
70 msxms 22259 . . . . 5  |-  ( T  e.  MetSp  ->  T  e.  *MetSp )
71 eqid 2622 . . . . . 6  |-  ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) )
723, 71xmsxmet 22261 . . . . 5  |-  ( T  e.  *MetSp  ->  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T
) ) )
7329, 70, 723syl 18 . . . 4  |-  ( F  e.  ( S NGHom  T
)  ->  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T
) ) )
74 eqid 2622 . . . . 5  |-  ( MetOpen `  ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) )  =  (
MetOpen `  ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) )
75 eqid 2622 . . . . 5  |-  ( MetOpen `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) )  =  (
MetOpen `  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) )
7674, 75metcn 22348 . . . 4  |-  ( ( ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S ) )  /\  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T ) ) )  ->  ( F  e.  ( ( MetOpen `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) )  Cn  ( MetOpen `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) )  <->  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. r  e.  RR+  E. s  e.  RR+  A. y  e.  ( Base `  S ) ( ( x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  s  -> 
( ( F `  x ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  r
) ) ) )
7769, 73, 76syl2anc 693 . . 3  |-  ( F  e.  ( S NGHom  T
)  ->  ( F  e.  ( ( MetOpen `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) )  Cn  ( MetOpen `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) )  <->  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. r  e.  RR+  E. s  e.  RR+  A. y  e.  ( Base `  S ) ( ( x ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  s  -> 
( ( F `  x ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  r
) ) ) )
785, 66, 77mpbir2and 957 . 2  |-  ( F  e.  ( S NGHom  T
)  ->  F  e.  ( ( MetOpen `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) )  Cn  ( MetOpen `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) ) )
79 nghmcn.j . . . . 5  |-  J  =  ( TopOpen `  S )
8079, 2, 67mstopn 22257 . . . 4  |-  ( S  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) )
8117, 80syl 17 . . 3  |-  ( F  e.  ( S NGHom  T
)  ->  J  =  ( MetOpen `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) )
82 nghmcn.k . . . . 5  |-  K  =  ( TopOpen `  T )
8382, 3, 71mstopn 22257 . . . 4  |-  ( T  e.  MetSp  ->  K  =  ( MetOpen `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) )
8429, 83syl 17 . . 3  |-  ( F  e.  ( S NGHom  T
)  ->  K  =  ( MetOpen `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) )
8581, 84oveq12d 6668 . 2  |-  ( F  e.  ( S NGHom  T
)  ->  ( J  Cn  K )  =  ( ( MetOpen `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) )  Cn  ( MetOpen `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) ) )
8678, 85eleqtrrd 2704 1  |-  ( F  e.  ( S NGHom  T
)  ->  F  e.  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   RR+crp 11832   Basecbs 15857   distcds 15950   TopOpenctopn 16082    GrpHom cghm 17657   *Metcxmt 19731   MetOpencmopn 19736    Cn ccn 21028   *MetSpcxme 22122   MetSpcmt 22123  NrmGrpcngp 22382   normOpcnmo 22509   NGHom cnghm 22510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-ghm 17658  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nmo 22512  df-nghm 22513
This theorem is referenced by:  nmhmcn  22920
  Copyright terms: Public domain W3C validator