MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmcn Structured version   Visualization version   Unicode version

Theorem nmhmcn 22920
Description: A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmhmcn.j  |-  J  =  ( TopOpen `  S )
nmhmcn.k  |-  K  =  ( TopOpen `  T )
nmhmcn.g  |-  G  =  (Scalar `  S )
nmhmcn.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nmhmcn  |-  ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  ->  ( F  e.  ( S NMHom  T )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( J  Cn  K ) ) ) )

Proof of Theorem nmhmcn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . 5  |-  (NrmMod  i^i CMod ) 
C_ NrmMod
21sseli 3599 . . . 4  |-  ( S  e.  (NrmMod  i^i CMod )  ->  S  e. NrmMod )
31sseli 3599 . . . 4  |-  ( T  e.  (NrmMod  i^i CMod )  ->  T  e. NrmMod )
4 isnmhm 22550 . . . . 5  |-  ( F  e.  ( S NMHom  T
)  <->  ( ( S  e. NrmMod  /\  T  e. NrmMod )  /\  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
54baib 944 . . . 4  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( F  e.  ( S NMHom  T )  <-> 
( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
62, 3, 5syl2an 494 . . 3  |-  ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod ) )  ->  ( F  e.  ( S NMHom  T )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
763adant3 1081 . 2  |-  ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  ->  ( F  e.  ( S NMHom  T )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
8 nmhmcn.j . . . . 5  |-  J  =  ( TopOpen `  S )
9 nmhmcn.k . . . . 5  |-  K  =  ( TopOpen `  T )
108, 9nghmcn 22549 . . . 4  |-  ( F  e.  ( S NGHom  T
)  ->  F  e.  ( J  Cn  K
) )
11 simpll1 1100 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  S  e.  (NrmMod  i^i CMod ) )
121, 11sseldi 3601 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  S  e. NrmMod )
13 nlmngp 22481 . . . . . . . . 9  |-  ( S  e. NrmMod  ->  S  e. NrmGrp )
14 ngpms 22404 . . . . . . . . 9  |-  ( S  e. NrmGrp  ->  S  e.  MetSp )
1512, 13, 143syl 18 . . . . . . . 8  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  S  e.  MetSp )
16 msxms 22259 . . . . . . . 8  |-  ( S  e.  MetSp  ->  S  e.  *MetSp )
17 eqid 2622 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
18 eqid 2622 . . . . . . . . 9  |-  ( (
dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  =  ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) )
1917, 18xmsxmet 22261 . . . . . . . 8  |-  ( S  e.  *MetSp  ->  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S
) ) )
2015, 16, 193syl 18 . . . . . . 7  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S
) ) )
21 simpr 477 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  K
) )
22 simpll2 1101 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  T  e.  (NrmMod  i^i CMod ) )
231, 22sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  T  e. NrmMod )
24 nlmngp 22481 . . . . . . . . . . . . 13  |-  ( T  e. NrmMod  ->  T  e. NrmGrp )
25 ngpms 22404 . . . . . . . . . . . . 13  |-  ( T  e. NrmGrp  ->  T  e.  MetSp )
2623, 24, 253syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  T  e.  MetSp )
27 msxms 22259 . . . . . . . . . . . 12  |-  ( T  e.  MetSp  ->  T  e.  *MetSp )
28 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  T )  =  (
Base `  T )
29 eqid 2622 . . . . . . . . . . . . 13  |-  ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) )
3028, 29xmsxmet 22261 . . . . . . . . . . . 12  |-  ( T  e.  *MetSp  ->  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T
) ) )
3126, 27, 303syl 18 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T
) ) )
32 nlmlmod 22482 . . . . . . . . . . . 12  |-  ( T  e. NrmMod  ->  T  e.  LMod )
33 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  T )  =  ( 0g `  T
)
3428, 33lmod0vcl 18892 . . . . . . . . . . . 12  |-  ( T  e.  LMod  ->  ( 0g
`  T )  e.  ( Base `  T
) )
3523, 32, 343syl 18 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( 0g `  T )  e.  ( Base `  T
) )
36 1rp 11836 . . . . . . . . . . . 12  |-  1  e.  RR+
37 rpxr 11840 . . . . . . . . . . . 12  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
3836, 37mp1i 13 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  1  e.  RR* )
39 eqid 2622 . . . . . . . . . . . 12  |-  ( MetOpen `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) )  =  (
MetOpen `  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) )
4039blopn 22305 . . . . . . . . . . 11  |-  ( ( ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T ) )  /\  ( 0g `  T )  e.  ( Base `  T
)  /\  1  e.  RR* )  ->  ( ( 0g `  T ) (
ball `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 )  e.  ( MetOpen `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) )
4131, 35, 38, 40syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  (
( 0g `  T
) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 )  e.  ( MetOpen `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) )
429, 28, 29mstopn 22257 . . . . . . . . . . 11  |-  ( T  e.  MetSp  ->  K  =  ( MetOpen `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) )
4323, 24, 25, 424syl 19 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  K  =  ( MetOpen `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) )
4441, 43eleqtrrd 2704 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  (
( 0g `  T
) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 )  e.  K )
45 cnima 21069 . . . . . . . . 9  |-  ( ( F  e.  ( J  Cn  K )  /\  ( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 )  e.  K )  -> 
( `' F "
( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) )  e.  J )
4621, 44, 45syl2anc 693 . . . . . . . 8  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  e.  J )
478, 17, 18mstopn 22257 . . . . . . . . 9  |-  ( S  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) )
4812, 13, 14, 474syl 19 . . . . . . . 8  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  J  =  ( MetOpen `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) )
4946, 48eleqtrd 2703 . . . . . . 7  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  e.  ( MetOpen `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) )
50 nlmlmod 22482 . . . . . . . . 9  |-  ( S  e. NrmMod  ->  S  e.  LMod )
51 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  S )  =  ( 0g `  S
)
5217, 51lmod0vcl 18892 . . . . . . . . 9  |-  ( S  e.  LMod  ->  ( 0g
`  S )  e.  ( Base `  S
) )
5312, 50, 523syl 18 . . . . . . . 8  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( 0g `  S )  e.  ( Base `  S
) )
54 lmghm 19031 . . . . . . . . . . 11  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
5554ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( S  GrpHom  T ) )
5651, 33ghmid 17666 . . . . . . . . . 10  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5755, 56syl 17 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
5836a1i 11 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  1  e.  RR+ )
59 blcntr 22218 . . . . . . . . . 10  |-  ( ( ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T ) )  /\  ( 0g `  T )  e.  ( Base `  T
)  /\  1  e.  RR+ )  ->  ( 0g `  T )  e.  ( ( 0g `  T
) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )
6031, 35, 58, 59syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( 0g `  T )  e.  ( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) )
6157, 60eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( F `  ( 0g `  S ) )  e.  ( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) )
6217, 28lmhmf 19034 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
6362ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  F : ( Base `  S
) --> ( Base `  T
) )
64 ffn 6045 . . . . . . . . 9  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
65 elpreima 6337 . . . . . . . . 9  |-  ( F  Fn  ( Base `  S
)  ->  ( ( 0g `  S )  e.  ( `' F "
( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) )  <->  ( ( 0g
`  S )  e.  ( Base `  S
)  /\  ( F `  ( 0g `  S
) )  e.  ( ( 0g `  T
) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) )
6663, 64, 653syl 18 . . . . . . . 8  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  (
( 0g `  S
)  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  <-> 
( ( 0g `  S )  e.  (
Base `  S )  /\  ( F `  ( 0g `  S ) )  e.  ( ( 0g
`  T ) (
ball `  ( ( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) )
6753, 61, 66mpbir2and 957 . . . . . . 7  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( 0g `  S )  e.  ( `' F "
( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) ) )
68 eqid 2622 . . . . . . . 8  |-  ( MetOpen `  ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) )  =  (
MetOpen `  ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) )
6968mopni2 22298 . . . . . . 7  |-  ( ( ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S ) )  /\  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  e.  ( MetOpen `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) )  /\  ( 0g
`  S )  e.  ( `' F "
( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) ) )  ->  E. x  e.  RR+  ( ( 0g
`  S ) (
ball `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) )
7020, 49, 67, 69syl3anc 1326 . . . . . 6  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  E. x  e.  RR+  ( ( 0g
`  S ) (
ball `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) )
71 simpl1 1064 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  S  e.  (NrmMod  i^i CMod ) )
721, 71sseldi 3601 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  S  e. NrmMod )
7372, 13syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  S  e. NrmGrp )
7473adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  S  e. NrmGrp )
7574ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  S  e. NrmGrp )
76 ngpgrp 22403 . . . . . . . . . . . . . . . 16  |-  ( S  e. NrmGrp  ->  S  e.  Grp )
7775, 76syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  S  e.  Grp )
78 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  y  e.  ( Base `  S
) )
79 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( norm `  S )  =  (
norm `  S )
80 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( dist `  S )  =  (
dist `  S )
8179, 17, 51, 80, 18nmval2 22396 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  Grp  /\  y  e.  ( Base `  S ) )  -> 
( ( norm `  S
) `  y )  =  ( y ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) ( 0g `  S ) ) )
8277, 78, 81syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( norm `  S ) `  y )  =  ( y ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) ( 0g `  S ) ) )
8320ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S
) ) )
8453ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  ( 0g `  S )  e.  ( Base `  S
) )
85 xmetsym 22152 . . . . . . . . . . . . . . 15  |-  ( ( ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S ) )  /\  y  e.  ( Base `  S )  /\  ( 0g `  S )  e.  ( Base `  S
) )  ->  (
y ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) ( 0g `  S ) )  =  ( ( 0g `  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y ) )
8683, 78, 84, 85syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
y ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) ( 0g `  S ) )  =  ( ( 0g `  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y ) )
8782, 86eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( norm `  S ) `  y )  =  ( ( 0g `  S
) ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y ) )
8887breq1d 4663 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( norm `  S
) `  y )  <  x  <->  ( ( 0g
`  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x ) )
8988biimpd 219 . . . . . . . . . . 11  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( norm `  S
) `  y )  <  x  ->  ( ( 0g `  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x ) )
9063ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  F : ( Base `  S
) --> ( Base `  T
) )
91 elpreima 6337 . . . . . . . . . . . . 13  |-  ( F  Fn  ( Base `  S
)  ->  ( y  e.  ( `' F "
( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  ( ( 0g `  T
) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) )
9290, 64, 913syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
y  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  <-> 
( y  e.  (
Base `  S )  /\  ( F `  y
)  e.  ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) )
9331ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T
) ) )
9435ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  ( 0g `  T )  e.  ( Base `  T
) )
9536, 37mp1i 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  1  e.  RR* )
96 elbl 22193 . . . . . . . . . . . . . . 15  |-  ( ( ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T ) )  /\  ( 0g `  T )  e.  ( Base `  T
)  /\  1  e.  RR* )  ->  ( ( F `  y )  e.  ( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 )  <-> 
( ( F `  y )  e.  (
Base `  T )  /\  ( ( 0g `  T ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  1
) ) )
9793, 94, 95, 96syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( F `  y
)  e.  ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 )  <->  ( ( F `  y )  e.  ( Base `  T
)  /\  ( ( 0g `  T ) ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  <  1 ) ) )
98 simpl2 1065 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  T  e.  (NrmMod  i^i CMod ) )
991, 98sseldi 3601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  T  e. NrmMod )
10099, 24syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  T  e. NrmGrp )
101100adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  T  e. NrmGrp )
102101ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  T  e. NrmGrp )
103 simplr 792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( S LMHom  T ) )
104103adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  F  e.  ( S LMHom  T ) )
105104, 62syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  F :
( Base `  S ) --> ( Base `  T )
)
106105ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  ( F `  y )  e.  ( Base `  T
) )
107 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( norm `  T )  =  (
norm `  T )
10828, 107nmcl 22420 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e. NrmGrp  /\  ( F `  y )  e.  ( Base `  T
) )  ->  (
( norm `  T ) `  ( F `  y
) )  e.  RR )
109102, 106, 108syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( norm `  T ) `  ( F `  y
) )  e.  RR )
110 1re 10039 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
111 ltle 10126 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( norm `  T
) `  ( F `  y ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( norm `  T
) `  ( F `  y ) )  <  1  ->  ( ( norm `  T ) `  ( F `  y ) )  <_  1 ) )
112109, 110, 111sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( norm `  T
) `  ( F `  y ) )  <  1  ->  ( ( norm `  T ) `  ( F `  y ) )  <_  1 ) )
113 ngpgrp 22403 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
114102, 113syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  T  e.  Grp )
115 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  ( dist `  T )  =  (
dist `  T )
116107, 28, 33, 115, 29nmval2 22396 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  e.  Grp  /\  ( F `  y )  e.  ( Base `  T
) )  ->  (
( norm `  T ) `  ( F `  y
) )  =  ( ( F `  y
) ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) ( 0g `  T ) ) )
117114, 106, 116syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( norm `  T ) `  ( F `  y
) )  =  ( ( F `  y
) ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) ( 0g `  T ) ) )
118 xmetsym 22152 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) )  e.  ( *Met `  ( Base `  T ) )  /\  ( F `  y )  e.  ( Base `  T
)  /\  ( 0g `  T )  e.  (
Base `  T )
)  ->  ( ( F `  y )
( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( 0g `  T ) )  =  ( ( 0g `  T ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) ) )
11993, 106, 94, 118syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( F `  y
) ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) ( 0g `  T ) )  =  ( ( 0g `  T ) ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) ) )
120117, 119eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( norm `  T ) `  ( F `  y
) )  =  ( ( 0g `  T
) ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) ( F `  y ) ) )
121120breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( norm `  T
) `  ( F `  y ) )  <  1  <->  ( ( 0g
`  T ) ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ( F `  y ) )  <  1 ) )
122 1red 10055 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  1  e.  RR )
123 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  x  e.  RR+ )
124109, 122, 123lediv1d 11918 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( norm `  T
) `  ( F `  y ) )  <_ 
1  <->  ( ( (
norm `  T ) `  ( F `  y
) )  /  x
)  <_  ( 1  /  x ) ) )
125112, 121, 1243imtr3d 282 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( 0g `  T ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  1  ->  ( ( ( norm `  T ) `  ( F `  y )
)  /  x )  <_  ( 1  /  x ) ) )
126125adantld 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( F `  y )  e.  (
Base `  T )  /\  ( ( 0g `  T ) ( (
dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ( F `  y
) )  <  1
)  ->  ( (
( norm `  T ) `  ( F `  y
) )  /  x
)  <_  ( 1  /  x ) ) )
12797, 126sylbid 230 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( F `  y
)  e.  ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 )  -> 
( ( ( norm `  T ) `  ( F `  y )
)  /  x )  <_  ( 1  /  x ) ) )
128127adantld 483 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( y  e.  (
Base `  S )  /\  ( F `  y
)  e.  ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  ->  ( ( (
norm `  T ) `  ( F `  y
) )  /  x
)  <_  ( 1  /  x ) ) )
12992, 128sylbid 230 . . . . . . . . . . 11  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
y  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  ->  ( ( (
norm `  T ) `  ( F `  y
) )  /  x
)  <_  ( 1  /  x ) ) )
13089, 129imim12d 81 . . . . . . . . . 10  |-  ( ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  RR+ )  /\  y  e.  ( Base `  S
) )  ->  (
( ( ( 0g
`  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x  ->  y  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) )  ->  ( (
( norm `  S ) `  y )  <  x  ->  ( ( ( norm `  T ) `  ( F `  y )
)  /  x )  <_  ( 1  /  x ) ) ) )
131130ralimdva 2962 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( A. y  e.  ( Base `  S ) ( ( ( 0g `  S
) ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  x  -> 
y  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) )  ->  A. y  e.  ( Base `  S
) ( ( (
norm `  S ) `  y )  <  x  ->  ( ( ( norm `  T ) `  ( F `  y )
)  /  x )  <_  ( 1  /  x ) ) ) )
13220adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( (
dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S
) ) )
13353adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( 0g
`  S )  e.  ( Base `  S
) )
134 rpxr 11840 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e. 
RR* )
135134adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  x  e. 
RR* )
136 blval 22191 . . . . . . . . . . . 12  |-  ( ( ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) )  e.  ( *Met `  ( Base `  S ) )  /\  ( 0g `  S )  e.  ( Base `  S
)  /\  x  e.  RR* )  ->  ( ( 0g `  S ) (
ball `  ( ( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  =  { y  e.  (
Base `  S )  |  ( ( 0g
`  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x } )
137132, 133, 135, 136syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( 0g `  S ) ( ball `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  =  { y  e.  (
Base `  S )  |  ( ( 0g
`  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x } )
138137sseq1d 3632 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( ( 0g `  S
) ( ball `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  <->  { y  e.  (
Base `  S )  |  ( ( 0g
`  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x }  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) )
139 rabss 3679 . . . . . . . . . 10  |-  ( { y  e.  ( Base `  S )  |  ( ( 0g `  S
) ( ( dist `  S )  |`  (
( Base `  S )  X.  ( Base `  S
) ) ) y )  <  x }  C_  ( `' F "
( ( 0g `  T ) ( ball `  ( ( dist `  T
)  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) ) 1 ) )  <->  A. y  e.  (
Base `  S )
( ( ( 0g
`  S ) ( ( dist `  S
)  |`  ( ( Base `  S )  X.  ( Base `  S ) ) ) y )  < 
x  ->  y  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) )
140138, 139syl6bb 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( ( 0g `  S
) ( ball `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  <->  A. y  e.  ( Base `  S ) ( ( ( 0g `  S ) ( (
dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) y )  <  x  ->  y  e.  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) ) ) ) )
141 eqid 2622 . . . . . . . . . 10  |-  ( S
normOp T )  =  ( S normOp T )
142 nmhmcn.g . . . . . . . . . 10  |-  G  =  (Scalar `  S )
143 nmhmcn.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
14411adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  S  e.  (NrmMod  i^i CMod ) )
14522adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  T  e.  (NrmMod  i^i CMod ) )
146 rpreccl 11857 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
147146adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
148147rpxrd 11873 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( 1  /  x )  e. 
RR* )
149 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
150 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  QQ  C_  B
)
151150ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  QQ  C_  B )
152141, 17, 79, 107, 142, 143, 144, 145, 104, 148, 149, 151nmoleub2b 22918 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( ( S normOp T ) `
 F )  <_ 
( 1  /  x
)  <->  A. y  e.  (
Base `  S )
( ( ( norm `  S ) `  y
)  <  x  ->  ( ( ( norm `  T
) `  ( F `  y ) )  /  x )  <_  (
1  /  x ) ) ) )
153131, 140, 1523imtr4d 283 . . . . . . . 8  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( ( 0g `  S
) ( ball `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  ->  ( ( S
normOp T ) `  F
)  <_  ( 1  /  x ) ) )
15474, 101, 553jca 1242 . . . . . . . . 9  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) ) )
155146rpred 11872 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR )
156141bddnghm 22530 . . . . . . . . . 10  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( ( 1  /  x )  e.  RR  /\  ( ( S normOp T ) `  F )  <_  (
1  /  x ) ) )  ->  F  e.  ( S NGHom  T ) )
157156expr 643 . . . . . . . . 9  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( 1  /  x )  e.  RR )  ->  ( ( ( S normOp T ) `  F )  <_  (
1  /  x )  ->  F  e.  ( S NGHom  T ) ) )
158154, 155, 157syl2an 494 . . . . . . . 8  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( ( S normOp T ) `
 F )  <_ 
( 1  /  x
)  ->  F  e.  ( S NGHom  T ) ) )
159153, 158syld 47 . . . . . . 7  |-  ( ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod
)  /\  QQ  C_  B
)  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  RR+ )  ->  ( ( ( 0g `  S
) ( ball `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  ->  F  e.  ( S NGHom  T ) ) )
160159rexlimdva 3031 . . . . . 6  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  ( E. x  e.  RR+  (
( 0g `  S
) ( ball `  (
( dist `  S )  |`  ( ( Base `  S
)  X.  ( Base `  S ) ) ) ) x )  C_  ( `' F " ( ( 0g `  T ) ( ball `  (
( dist `  T )  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) ) 1 ) )  ->  F  e.  ( S NGHom  T ) ) )
16170, 160mpd 15 . . . . 5  |-  ( ( ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( S NGHom  T ) )
162161ex 450 . . . 4  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  ( F  e.  ( J  Cn  K
)  ->  F  e.  ( S NGHom  T ) ) )
16310, 162impbid2 216 . . 3  |-  ( ( ( S  e.  (NrmMod 
i^i CMod )  /\  T  e.  (NrmMod  i^i CMod )  /\  QQ  C_  B )  /\  F  e.  ( S LMHom  T ) )  ->  ( F  e.  ( S NGHom  T )  <-> 
F  e.  ( J  Cn  K ) ) )
164163pm5.32da 673 . 2  |-  ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  ->  (
( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( J  Cn  K ) ) ) )
1657, 164bitrd 268 1  |-  ( ( S  e.  (NrmMod  i^i CMod )  /\  T  e.  (NrmMod 
i^i CMod )  /\  QQ  C_  B )  ->  ( F  e.  ( S NMHom  T )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( J  Cn  K ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   QQcq 11788   RR+crp 11832   Basecbs 15857  Scalarcsca 15944   distcds 15950   TopOpenctopn 16082   0gc0g 16100   Grpcgrp 17422    GrpHom cghm 17657   LModclmod 18863   LMHom clmhm 19019   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736    Cn ccn 21028   *MetSpcxme 22122   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385   normOpcnmo 22509   NGHom cnghm 22510   NMHom cnmhm 22511  CModcclm 22862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lmhm 19022  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nlm 22391  df-nmo 22512  df-nghm 22513  df-nmhm 22514  df-clm 22863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator