Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesgbe Structured version   Visualization version   Unicode version

Theorem nnsum3primesgbe 41680
Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesgbe  |-  ( N  e. GoldbachEven  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) ) )
Distinct variable group:    N, d, f, k

Proof of Theorem nnsum3primesgbe
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 41639 . 2  |-  ( N  e. GoldbachEven 
<->  ( N  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) ) )
2 2nn 11185 . . . . . . . 8  |-  2  e.  NN
32a1i 11 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  -> 
2  e.  NN )
4 oveq2 6658 . . . . . . . . . . 11  |-  ( d  =  2  ->  (
1 ... d )  =  ( 1 ... 2
) )
5 df-2 11079 . . . . . . . . . . . . 13  |-  2  =  ( 1  +  1 )
65oveq2i 6661 . . . . . . . . . . . 12  |-  ( 1 ... 2 )  =  ( 1 ... (
1  +  1 ) )
7 1z 11407 . . . . . . . . . . . . 13  |-  1  e.  ZZ
8 fzpr 12396 . . . . . . . . . . . . 13  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } )
97, 8ax-mp 5 . . . . . . . . . . . 12  |-  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) }
10 1p1e2 11134 . . . . . . . . . . . . 13  |-  ( 1  +  1 )  =  2
1110preq2i 4272 . . . . . . . . . . . 12  |-  { 1 ,  ( 1  +  1 ) }  =  { 1 ,  2 }
126, 9, 113eqtri 2648 . . . . . . . . . . 11  |-  ( 1 ... 2 )  =  { 1 ,  2 }
134, 12syl6eq 2672 . . . . . . . . . 10  |-  ( d  =  2  ->  (
1 ... d )  =  { 1 ,  2 } )
1413oveq2d 6666 . . . . . . . . 9  |-  ( d  =  2  ->  ( Prime  ^m  ( 1 ... d ) )  =  ( Prime  ^m  { 1 ,  2 } ) )
15 breq1 4656 . . . . . . . . . 10  |-  ( d  =  2  ->  (
d  <_  3  <->  2  <_  3 ) )
1613sumeq1d 14431 . . . . . . . . . . 11  |-  ( d  =  2  ->  sum_ k  e.  ( 1 ... d
) ( f `  k )  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
)
1716eqeq2d 2632 . . . . . . . . . 10  |-  ( d  =  2  ->  ( N  =  sum_ k  e.  ( 1 ... d
) ( f `  k )  <->  N  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
) )
1815, 17anbi12d 747 . . . . . . . . 9  |-  ( d  =  2  ->  (
( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k ) )  <->  ( 2  <_ 
3  /\  N  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
) ) )
1914, 18rexeqbidv 3153 . . . . . . . 8  |-  ( d  =  2  ->  ( E. f  e.  ( Prime  ^m  ( 1 ... d ) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d
) ( f `  k ) )  <->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  N  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
) ) )
2019adantl 482 . . . . . . 7  |-  ( ( ( ( p  e. 
Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  /\  d  =  2 )  ->  ( E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) )  <->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  N  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
) ) )
21 1ne2 11240 . . . . . . . . . . . . 13  |-  1  =/=  2
22 1ex 10035 . . . . . . . . . . . . . 14  |-  1  e.  _V
23 2ex 11092 . . . . . . . . . . . . . 14  |-  2  e.  _V
24 vex 3203 . . . . . . . . . . . . . 14  |-  p  e. 
_V
25 vex 3203 . . . . . . . . . . . . . 14  |-  q  e. 
_V
2622, 23, 24, 25fpr 6421 . . . . . . . . . . . . 13  |-  ( 1  =/=  2  ->  { <. 1 ,  p >. , 
<. 2 ,  q
>. } : { 1 ,  2 } --> { p ,  q } )
2721, 26mp1i 13 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  { <. 1 ,  p >. , 
<. 2 ,  q
>. } : { 1 ,  2 } --> { p ,  q } )
28 prssi 4353 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  { p ,  q }  C_  Prime )
2927, 28fssd 6057 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  { <. 1 ,  p >. , 
<. 2 ,  q
>. } : { 1 ,  2 } --> Prime )
30 prmex 15391 . . . . . . . . . . . . 13  |-  Prime  e.  _V
31 prex 4909 . . . . . . . . . . . . 13  |-  { 1 ,  2 }  e.  _V
3230, 31pm3.2i 471 . . . . . . . . . . . 12  |-  ( Prime  e.  _V  /\  { 1 ,  2 }  e.  _V )
33 elmapg 7870 . . . . . . . . . . . 12  |-  ( ( Prime  e.  _V  /\  { 1 ,  2 }  e.  _V )  -> 
( { <. 1 ,  p >. ,  <. 2 ,  q >. }  e.  ( Prime  ^m  { 1 ,  2 } )  <->  { <. 1 ,  p >. ,  <. 2 ,  q
>. } : { 1 ,  2 } --> Prime )
)
3432, 33mp1i 13 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. }  e.  ( Prime  ^m  { 1 ,  2 } )  <->  { <. 1 ,  p >. ,  <. 2 ,  q >. } : { 1 ,  2 } --> Prime ) )
3529, 34mpbird 247 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  { <. 1 ,  p >. , 
<. 2 ,  q
>. }  e.  ( Prime  ^m  { 1 ,  2 } ) )
36 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. }  ->  ( f `  k )  =  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. } `  k ) )
3736adantr 481 . . . . . . . . . . . . . 14  |-  ( ( f  =  { <. 1 ,  p >. , 
<. 2 ,  q
>. }  /\  k  e. 
{ 1 ,  2 } )  ->  (
f `  k )  =  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. } `  k ) )
3837sumeq2dv 14433 . . . . . . . . . . . . 13  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. }  ->  sum_ k  e.  { 1 ,  2 }  (
f `  k )  =  sum_ k  e.  {
1 ,  2 }  ( { <. 1 ,  p >. ,  <. 2 ,  q >. } `  k ) )
3938eqeq1d 2624 . . . . . . . . . . . 12  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. }  ->  (
sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q )  <->  sum_ k  e. 
{ 1 ,  2 }  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. } `  k )  =  ( p  +  q ) ) )
4039anbi2d 740 . . . . . . . . . . 11  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. }  ->  ( ( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) )  <-> 
( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( { <. 1 ,  p >. ,  <. 2 ,  q >. } `  k )  =  ( p  +  q ) ) ) )
4140adantl 482 . . . . . . . . . 10  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  f  =  { <. 1 ,  p >. , 
<. 2 ,  q
>. } )  ->  (
( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) )  <-> 
( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( { <. 1 ,  p >. ,  <. 2 ,  q >. } `  k )  =  ( p  +  q ) ) ) )
42 prmz 15389 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  p  e.  ZZ )
43 prmz 15389 . . . . . . . . . . . 12  |-  ( q  e.  Prime  ->  q  e.  ZZ )
44 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  k )  =  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. } `  1 ) )
4522, 24fvpr1 6456 . . . . . . . . . . . . . . 15  |-  ( 1  =/=  2  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  1 )  =  p )
4621, 45ax-mp 5 . . . . . . . . . . . . . 14  |-  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. } `  1 )  =  p
4744, 46syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  k )  =  p )
48 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  2  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  k )  =  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. } `  2 ) )
4923, 25fvpr2 6457 . . . . . . . . . . . . . . 15  |-  ( 1  =/=  2  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  2 )  =  q )
5021, 49ax-mp 5 . . . . . . . . . . . . . 14  |-  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. } `  2 )  =  q
5148, 50syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  2  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  k )  =  q )
52 zcn 11382 . . . . . . . . . . . . . 14  |-  ( p  e.  ZZ  ->  p  e.  CC )
53 zcn 11382 . . . . . . . . . . . . . 14  |-  ( q  e.  ZZ  ->  q  e.  CC )
5452, 53anim12i 590 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  q  e.  ZZ )  ->  ( p  e.  CC  /\  q  e.  CC ) )
557, 2pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  /\  2  e.  NN )
5655a1i 11 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  q  e.  ZZ )  ->  ( 1  e.  ZZ  /\  2  e.  NN ) )
5721a1i 11 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  q  e.  ZZ )  ->  1  =/=  2 )
5847, 51, 54, 56, 57sumpr 14477 . . . . . . . . . . . 12  |-  ( ( p  e.  ZZ  /\  q  e.  ZZ )  -> 
sum_ k  e.  {
1 ,  2 }  ( { <. 1 ,  p >. ,  <. 2 ,  q >. } `  k )  =  ( p  +  q ) )
5942, 43, 58syl2an 494 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  sum_ k  e.  { 1 ,  2 }  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. } `  k )  =  ( p  +  q ) )
60 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
61 3re 11094 . . . . . . . . . . . 12  |-  3  e.  RR
62 2lt3 11195 . . . . . . . . . . . 12  |-  2  <  3
6360, 61, 62ltleii 10160 . . . . . . . . . . 11  |-  2  <_  3
6459, 63jctil 560 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  (
2  <_  3  /\  sum_ k  e.  { 1 ,  2 }  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. } `  k )  =  ( p  +  q ) ) )
6535, 41, 64rspcedvd 3317 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) ) )
6665adantr 481 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  ->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  sum_ k  e.  { 1 ,  2 }  (
f `  k )  =  ( p  +  q ) ) )
67 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( N  =  ( p  +  q )  ->  ( N  =  sum_ k  e. 
{ 1 ,  2 }  ( f `  k )  <->  ( p  +  q )  = 
sum_ k  e.  {
1 ,  2 }  ( f `  k
) ) )
68 eqcom 2629 . . . . . . . . . . . . 13  |-  ( ( p  +  q )  =  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  <->  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) )
6967, 68syl6bb 276 . . . . . . . . . . . 12  |-  ( N  =  ( p  +  q )  ->  ( N  =  sum_ k  e. 
{ 1 ,  2 }  ( f `  k )  <->  sum_ k  e. 
{ 1 ,  2 }  ( f `  k )  =  ( p  +  q ) ) )
7069anbi2d 740 . . . . . . . . . . 11  |-  ( N  =  ( p  +  q )  ->  (
( 2  <_  3  /\  N  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
)  <->  ( 2  <_ 
3  /\  sum_ k  e. 
{ 1 ,  2 }  ( f `  k )  =  ( p  +  q ) ) ) )
7170rexbidv 3052 . . . . . . . . . 10  |-  ( N  =  ( p  +  q )  ->  ( E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  N  =  sum_ k  e. 
{ 1 ,  2 }  ( f `  k ) )  <->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) ) ) )
72713ad2ant3 1084 . . . . . . . . 9  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) )  ->  ( E. f  e.  ( Prime  ^m 
{ 1 ,  2 } ) ( 2  <_  3  /\  N  =  sum_ k  e.  {
1 ,  2 }  ( f `  k
) )  <->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) ) ) )
7372adantl 482 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  -> 
( E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  N  =  sum_ k  e.  { 1 ,  2 }  (
f `  k )
)  <->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  sum_ k  e.  {
1 ,  2 }  ( f `  k
)  =  ( p  +  q ) ) ) )
7466, 73mpbird 247 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  ->  E. f  e.  ( Prime  ^m  { 1 ,  2 } ) ( 2  <_  3  /\  N  =  sum_ k  e. 
{ 1 ,  2 }  ( f `  k ) ) )
753, 20, 74rspcedvd 3317 . . . . . 6  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) ) )
7675a1d 25 . . . . 5  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  -> 
( N  e. Even  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) ) ) )
7776ex 450 . . . 4  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  (
( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) )  ->  ( N  e. Even  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  (
1 ... d ) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k ) ) ) ) )
7877rexlimivv 3036 . . 3  |-  ( E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) )  -> 
( N  e. Even  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) ) ) )
7978impcom 446 . 2  |-  ( ( N  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  N  =  ( p  +  q ) ) )  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) ) )
801, 79sylbi 207 1  |-  ( N  e. GoldbachEven  ->  E. d  e.  NN  E. f  e.  ( Prime  ^m  ( 1 ... d
) ) ( d  <_  3  /\  N  =  sum_ k  e.  ( 1 ... d ) ( f `  k
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   {cpr 4179   <.cop 4183   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   1c1 9937    + caddc 9939    <_ cle 10075   NNcn 11020   2c2 11070   3c3 11071   ZZcz 11377   ...cfz 12326   sum_csu 14416   Primecprime 15385   Even ceven 41537   Odd codd 41538   GoldbachEven cgbe 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prm 15386  df-gbe 41636
This theorem is referenced by:  nnsum4primesgbe  41681  nnsum3primesle9  41682  bgoldbnnsum3prm  41692
  Copyright terms: Public domain W3C validator