MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   Unicode version

Theorem nrginvrcn 22496
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x  |-  X  =  ( Base `  R
)
nrginvrcn.u  |-  U  =  (Unit `  R )
nrginvrcn.i  |-  I  =  ( invr `  R
)
nrginvrcn.j  |-  J  =  ( TopOpen `  R )
Assertion
Ref Expression
nrginvrcn  |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )

Proof of Theorem nrginvrcn
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 22467 . . . 4  |-  ( R  e. NrmRing  ->  R  e.  Ring )
2 nrginvrcn.u . . . . 5  |-  U  =  (Unit `  R )
3 eqid 2622 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
42, 3unitgrp 18667 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
52, 3unitgrpbas 18666 . . . . 5  |-  U  =  ( Base `  (
(mulGrp `  R )s  U
) )
6 nrginvrcn.i . . . . . 6  |-  I  =  ( invr `  R
)
72, 3, 6invrfval 18673 . . . . 5  |-  I  =  ( invg `  ( (mulGrp `  R )s  U
) )
85, 7grpinvf 17466 . . . 4  |-  ( ( (mulGrp `  R )s  U
)  e.  Grp  ->  I : U --> U )
91, 4, 83syl 18 . . 3  |-  ( R  e. NrmRing  ->  I : U --> U )
10 1rp 11836 . . . . . . . 8  |-  1  e.  RR+
1110ne0ii 3923 . . . . . . 7  |-  RR+  =/=  (/)
121ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  R  e.  Ring )
13 nrginvrcn.x . . . . . . . . . . . . . . . 16  |-  X  =  ( Base `  R
)
1413, 2unitss 18660 . . . . . . . . . . . . . . 15  |-  U  C_  X
15 simplrl 800 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  x  e.  U )
1614, 15sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  x  e.  X )
17 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  y  e.  U )
1814, 17sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  y  e.  X )
19 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 1r
`  R )  =  ( 1r `  R
)
20 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  =  ( 0g `  R
)
2113, 19, 20ring1eq0 18590 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  x  e.  X  /\  y  e.  X )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  ->  x  =  y )
)
2212, 16, 18, 21syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  x  =  y ) )
23 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( I `
 y )  =  ( I `  y
)
24 nrgngp 22466 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
25 ngpms 22404 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. NrmGrp  ->  R  e.  MetSp )
26 msxms 22259 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  MetSp  ->  R  e.  *MetSp )
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. NrmRing  ->  R  e.  *MetSp )
2827ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  R  e.  *MetSp )
299adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  I : U --> U )
3029ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  y )  e.  U
)
3114, 30sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  y )  e.  X
)
32 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  R )  =  (
dist `  R )
3313, 32xmseq0 22269 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  *MetSp  /\  ( I `  y
)  e.  X  /\  ( I `  y
)  e.  X )  ->  ( ( ( I `  y ) ( dist `  R
) ( I `  y ) )  =  0  <->  ( I `  y )  =  ( I `  y ) ) )
3428, 31, 31, 33syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( I `  y
) ( dist `  R
) ( I `  y ) )  =  0  <->  ( I `  y )  =  ( I `  y ) ) )
3523, 34mpbiri 248 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  y )
( dist `  R )
( I `  y
) )  =  0 )
36 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  r  e.  RR+ )
3736rpgt0d 11875 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  0  <  r )
3835, 37eqbrtrd 4675 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  y )
( dist `  R )
( I `  y
) )  <  r
)
39 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
I `  x )  =  ( I `  y ) )
4039oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  =  ( ( I `  y ) ( dist `  R ) ( I `
 y ) ) )
4140breq1d 4663 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( ( I `  x ) ( dist `  R ) ( I `
 y ) )  <  r  <->  ( (
I `  y )
( dist `  R )
( I `  y
) )  <  r
) )
4238, 41syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( x  =  y  ->  ( ( I `  x ) ( dist `  R
) ( I `  y ) )  < 
r ) )
4322, 42syld 47 . . . . . . . . . . . 12  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
4443imp 445 . . . . . . . . . . 11  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  y  e.  U )  /\  ( 1r `  R )  =  ( 0g `  R
) )  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r )
4544an32s 846 . . . . . . . . . 10  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  /\  y  e.  U )  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r )
4645a1d 25 . . . . . . . . 9  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  /\  y  e.  U )  ->  (
( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
4746ralrimiva 2966 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
4847ralrimivw 2967 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  A. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
49 r19.2z 4060 . . . . . . 7  |-  ( (
RR+  =/=  (/)  /\  A. s  e.  RR+  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
5011, 48, 49sylancr 695 . . . . . 6  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
51 eqid 2622 . . . . . . 7  |-  ( norm `  R )  =  (
norm `  R )
52 simpll 790 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e. NrmRing )
531ad2antrr 762 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e.  Ring )
54 simpr 477 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
5519, 20isnzr 19259 . . . . . . . 8  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  ( 0g
`  R ) ) )
5653, 54, 55sylanbrc 698 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e. NzRing )
57 simplrl 800 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  x  e.  U
)
58 simplrr 801 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  r  e.  RR+ )
59 eqid 2622 . . . . . . 7  |-  ( if ( 1  <_  (
( ( norm `  R
) `  x )  x.  r ) ,  1 ,  ( ( (
norm `  R ) `  x )  x.  r
) )  x.  (
( ( norm `  R
) `  x )  /  2 ) )  =  ( if ( 1  <_  ( (
( norm `  R ) `  x )  x.  r
) ,  1 ,  ( ( ( norm `  R ) `  x
)  x.  r ) )  x.  ( ( ( norm `  R
) `  x )  /  2 ) )
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 22495 . . . . . 6  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
6150, 60pm2.61dane 2881 . . . . 5  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
6215, 17ovresd 6801 . . . . . . . . 9  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( x
( ( dist `  R
)  |`  ( U  X.  U ) ) y )  =  ( x ( dist `  R
) y ) )
6362breq1d 4663 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
x ( ( dist `  R )  |`  ( U  X.  U ) ) y )  <  s  <->  ( x ( dist `  R
) y )  < 
s ) )
64 simpl 473 . . . . . . . . . . . 12  |-  ( ( x  e.  U  /\  r  e.  RR+ )  ->  x  e.  U )
65 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( I : U --> U  /\  x  e.  U )  ->  ( I `  x
)  e.  U )
669, 64, 65syl2an 494 . . . . . . . . . . 11  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( I `  x )  e.  U
)
6766adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  x )  e.  U
)
6867, 30ovresd 6801 . . . . . . . . 9  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  x )
( ( dist `  R
)  |`  ( U  X.  U ) ) ( I `  y ) )  =  ( ( I `  x ) ( dist `  R
) ( I `  y ) ) )
6968breq1d 4663 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r  <->  ( ( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
7063, 69imbi12d 334 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
)  <->  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7170ralbidva 2985 . . . . . 6  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( A. y  e.  U  ( (
x ( ( dist `  R )  |`  ( U  X.  U ) ) y )  <  s  ->  ( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r )  <->  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7271rexbidv 3052 . . . . 5  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r )  <->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7361, 72mpbird 247 . . . 4  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
) )
7473ralrimivva 2971 . . 3  |-  ( R  e. NrmRing  ->  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r ) )
75 xpss12 5225 . . . . . . 7  |-  ( ( U  C_  X  /\  U  C_  X )  -> 
( U  X.  U
)  C_  ( X  X.  X ) )
7614, 14, 75mp2an 708 . . . . . 6  |-  ( U  X.  U )  C_  ( X  X.  X
)
77 resabs1 5427 . . . . . 6  |-  ( ( U  X.  U ) 
C_  ( X  X.  X )  ->  (
( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  =  ( ( dist `  R
)  |`  ( U  X.  U ) ) )
7876, 77ax-mp 5 . . . . 5  |-  ( ( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  =  ( ( dist `  R
)  |`  ( U  X.  U ) )
79 eqid 2622 . . . . . . . 8  |-  ( (
dist `  R )  |`  ( X  X.  X
) )  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
8013, 79xmsxmet 22261 . . . . . . 7  |-  ( R  e.  *MetSp  ->  (
( dist `  R )  |`  ( X  X.  X
) )  e.  ( *Met `  X
) )
8124, 25, 26, 804syl 19 . . . . . 6  |-  ( R  e. NrmRing  ->  ( ( dist `  R )  |`  ( X  X.  X ) )  e.  ( *Met `  X ) )
82 xmetres2 22166 . . . . . 6  |-  ( ( ( ( dist `  R
)  |`  ( X  X.  X ) )  e.  ( *Met `  X )  /\  U  C_  X )  ->  (
( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  e.  ( *Met `  U
) )
8381, 14, 82sylancl 694 . . . . 5  |-  ( R  e. NrmRing  ->  ( ( (
dist `  R )  |`  ( X  X.  X
) )  |`  ( U  X.  U ) )  e.  ( *Met `  U ) )
8478, 83syl5eqelr 2706 . . . 4  |-  ( R  e. NrmRing  ->  ( ( dist `  R )  |`  ( U  X.  U ) )  e.  ( *Met `  U ) )
85 eqid 2622 . . . . 5  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) )
8685, 85metcn 22348 . . . 4  |-  ( ( ( ( dist `  R
)  |`  ( U  X.  U ) )  e.  ( *Met `  U )  /\  (
( dist `  R )  |`  ( U  X.  U
) )  e.  ( *Met `  U
) )  ->  (
I  e.  ( (
MetOpen `  ( ( dist `  R )  |`  ( U  X.  U ) ) )  Cn  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) ) )  <->  ( I : U --> U  /\  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r ) ) ) )
8784, 84, 86syl2anc 693 . . 3  |-  ( R  e. NrmRing  ->  ( I  e.  ( ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) )  <-> 
( I : U --> U  /\  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
) ) ) )
889, 74, 87mpbir2and 957 . 2  |-  ( R  e. NrmRing  ->  I  e.  ( ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) ) )
89 nrginvrcn.j . . . . . . 7  |-  J  =  ( TopOpen `  R )
9089, 13, 79mstopn 22257 . . . . . 6  |-  ( R  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  R )  |`  ( X  X.  X
) ) ) )
9124, 25, 903syl 18 . . . . 5  |-  ( R  e. NrmRing  ->  J  =  (
MetOpen `  ( ( dist `  R )  |`  ( X  X.  X ) ) ) )
9291oveq1d 6665 . . . 4  |-  ( R  e. NrmRing  ->  ( Jt  U )  =  ( ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )t  U ) )
9378eqcomi 2631 . . . . . 6  |-  ( (
dist `  R )  |`  ( U  X.  U
) )  =  ( ( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )
94 eqid 2622 . . . . . 6  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( X  X.  X
) ) )
9593, 94, 85metrest 22329 . . . . 5  |-  ( ( ( ( dist `  R
)  |`  ( X  X.  X ) )  e.  ( *Met `  X )  /\  U  C_  X )  ->  (
( MetOpen `  ( ( dist `  R )  |`  ( X  X.  X
) ) )t  U )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) ) )
9681, 14, 95sylancl 694 . . . 4  |-  ( R  e. NrmRing  ->  ( ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )t  U )  =  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) ) )
9792, 96eqtrd 2656 . . 3  |-  ( R  e. NrmRing  ->  ( Jt  U )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) ) )
9897, 97oveq12d 6668 . 2  |-  ( R  e. NrmRing  ->  ( ( Jt  U )  Cn  ( Jt  U ) )  =  ( ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) ) )
9988, 98eleqtrrd 2704 1  |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   RR+crp 11832   Basecbs 15857   ↾s cress 15858   distcds 15950   ↾t crest 16081   TopOpenctopn 16082   0gc0g 16100   Grpcgrp 17422  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547  Unitcui 18639   invrcinvr 18671  NzRingcnzr 19257   *Metcxmt 19731   MetOpencmopn 19736    Cn ccn 21028   *MetSpcxme 22122   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-0g 16102  df-topgen 16104  df-xrs 16162  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-abv 18817  df-nzr 19258  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390
This theorem is referenced by:  nrgtdrg  22497
  Copyright terms: Public domain W3C validator