Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval3 Structured version   Visualization version   Unicode version

Theorem ovolval3 40861
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^ and  vol  o.  (,). See ovolval 23242 and ovolval2 40858 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval3.a  |-  ( ph  ->  A  C_  RR )
ovolval3.m  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) }
Assertion
Ref Expression
ovolval3  |-  ( ph  ->  ( vol* `  A )  = inf ( M ,  RR* ,  <  ) )
Distinct variable groups:    A, f,
y    ph, f, y
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolval3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 ovolval3.a . . 3  |-  ( ph  ->  A  C_  RR )
2 eqid 2622 . . 3  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }
31, 2ovolval2 40858 . 2  |-  ( ph  ->  ( vol* `  A )  = inf ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) } ,  RR* ,  <  )
)
4 ovolval3.m . . . . 5  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) }
5 reex 10027 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  RR  e.  _V
65, 5xpex 6962 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( RR 
X.  RR )  e. 
_V
7 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
8 mapss 7900 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( RR  X.  RR )  e.  _V  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR ) )  ->  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  C_  ( ( RR 
X.  RR )  ^m  NN ) )
96, 7, 8mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  C_  ( ( RR  X.  RR )  ^m  NN )
109sseli 3599 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f  e.  ( ( RR  X.  RR )  ^m  NN ) )
11 elmapi 7879 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  e.  ( ( RR 
X.  RR )  ^m  NN )  ->  f : NN --> ( RR  X.  RR ) )
1210, 11syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> ( RR  X.  RR ) )
1312ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
f `  n )  e.  ( RR  X.  RR ) )
14 1st2nd2 7205 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  n )  e.  ( RR  X.  RR )  ->  ( f `
 n )  = 
<. ( 1st `  (
f `  n )
) ,  ( 2nd `  ( f `  n
) ) >. )
1513, 14syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
f `  n )  =  <. ( 1st `  (
f `  n )
) ,  ( 2nd `  ( f `  n
) ) >. )
1615fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( (,) `  ( f `  n ) )  =  ( (,) `  <. ( 1st `  ( f `
 n ) ) ,  ( 2nd `  (
f `  n )
) >. ) )
17 df-ov 6653 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  ( f `
 n ) ) (,) ( 2nd `  (
f `  n )
) )  =  ( (,) `  <. ( 1st `  ( f `  n ) ) ,  ( 2nd `  (
f `  n )
) >. )
1817eqcomi 2631 . . . . . . . . . . . . . . . . . 18  |-  ( (,) `  <. ( 1st `  (
f `  n )
) ,  ( 2nd `  ( f `  n
) ) >. )  =  ( ( 1st `  ( f `  n
) ) (,) ( 2nd `  ( f `  n ) ) )
1918a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( (,) `  <. ( 1st `  (
f `  n )
) ,  ( 2nd `  ( f `  n
) ) >. )  =  ( ( 1st `  ( f `  n
) ) (,) ( 2nd `  ( f `  n ) ) ) )
2016, 19eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( (,) `  ( f `  n ) )  =  ( ( 1st `  (
f `  n )
) (,) ( 2nd `  ( f `  n
) ) ) )
2120fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( vol `  ( (,) `  (
f `  n )
) )  =  ( vol `  ( ( 1st `  ( f `
 n ) ) (,) ( 2nd `  (
f `  n )
) ) ) )
22 xp1st 7198 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( f `  n
) )  e.  RR )
2313, 22syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( 1st `  ( f `  n ) )  e.  RR )
24 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( f `  n
) )  e.  RR )
2513, 24syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( 2nd `  ( f `  n ) )  e.  RR )
26 elmapi 7879 . . . . . . . . . . . . . . . . . . 19  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2726adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
28 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  n  e.  NN )
29 ovolfcl 23235 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  (
f `  n )
)  e.  RR  /\  ( 2nd `  ( f `
 n ) )  e.  RR  /\  ( 1st `  ( f `  n ) )  <_ 
( 2nd `  (
f `  n )
) ) )
3027, 28, 29syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( 1st `  (
f `  n )
)  e.  RR  /\  ( 2nd `  ( f `
 n ) )  e.  RR  /\  ( 1st `  ( f `  n ) )  <_ 
( 2nd `  (
f `  n )
) ) )
3130simp3d 1075 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( 1st `  ( f `  n ) )  <_ 
( 2nd `  (
f `  n )
) )
32 volioo 23337 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  (
f `  n )
)  e.  RR  /\  ( 2nd `  ( f `
 n ) )  e.  RR  /\  ( 1st `  ( f `  n ) )  <_ 
( 2nd `  (
f `  n )
) )  ->  ( vol `  ( ( 1st `  ( f `  n
) ) (,) ( 2nd `  ( f `  n ) ) ) )  =  ( ( 2nd `  ( f `
 n ) )  -  ( 1st `  (
f `  n )
) ) )
3323, 25, 31, 32syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( vol `  ( ( 1st `  ( f `  n
) ) (,) ( 2nd `  ( f `  n ) ) ) )  =  ( ( 2nd `  ( f `
 n ) )  -  ( 1st `  (
f `  n )
) ) )
3421, 33eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( vol `  ( (,) `  (
f `  n )
) )  =  ( ( 2nd `  (
f `  n )
)  -  ( 1st `  ( f `  n
) ) ) )
35 ioof 12271 . . . . . . . . . . . . . . . . 17  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
36 ffun 6048 . . . . . . . . . . . . . . . . 17  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
3735, 36ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Fun  (,)
3837a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  Fun  (,) )
39 rexpssxrxp 10084 . . . . . . . . . . . . . . . . 17  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
4039, 13sseldi 3601 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
f `  n )  e.  ( RR*  X.  RR* )
)
4135fdmi 6052 . . . . . . . . . . . . . . . . . 18  |-  dom  (,)  =  ( RR*  X.  RR* )
4241eqcomi 2631 . . . . . . . . . . . . . . . . 17  |-  ( RR*  X. 
RR* )  =  dom  (,)
4342a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( RR*  X.  RR* )  =  dom  (,) )
4440, 43eleqtrd 2703 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
f `  n )  e.  dom  (,) )
45 fvco 6274 . . . . . . . . . . . . . . 15  |-  ( ( Fun  (,)  /\  (
f `  n )  e.  dom  (,) )  -> 
( ( vol  o.  (,) ) `  ( f `
 n ) )  =  ( vol `  ( (,) `  ( f `  n ) ) ) )
4638, 44, 45syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( vol  o.  (,) ) `  ( f `  n ) )  =  ( vol `  ( (,) `  ( f `  n ) ) ) )
4715fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( abs  o.  -  ) `  ( f `  n
) )  =  ( ( abs  o.  -  ) `  <. ( 1st `  ( f `  n
) ) ,  ( 2nd `  ( f `
 n ) )
>. ) )
48 df-ov 6653 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( f `
 n ) ) ( abs  o.  -  ) ( 2nd `  (
f `  n )
) )  =  ( ( abs  o.  -  ) `  <. ( 1st `  ( f `  n
) ) ,  ( 2nd `  ( f `
 n ) )
>. )
4948eqcomi 2631 . . . . . . . . . . . . . . . 16  |-  ( ( abs  o.  -  ) `  <. ( 1st `  (
f `  n )
) ,  ( 2nd `  ( f `  n
) ) >. )  =  ( ( 1st `  ( f `  n
) ) ( abs 
o.  -  ) ( 2nd `  ( f `  n ) ) )
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( abs  o.  -  ) `  <. ( 1st `  (
f `  n )
) ,  ( 2nd `  ( f `  n
) ) >. )  =  ( ( 1st `  ( f `  n
) ) ( abs 
o.  -  ) ( 2nd `  ( f `  n ) ) ) )
5123recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( 1st `  ( f `  n ) )  e.  CC )
5225recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( 2nd `  ( f `  n ) )  e.  CC )
53 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5453cnmetdval 22574 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  (
f `  n )
)  e.  CC  /\  ( 2nd `  ( f `
 n ) )  e.  CC )  -> 
( ( 1st `  (
f `  n )
) ( abs  o.  -  ) ( 2nd `  ( f `  n
) ) )  =  ( abs `  (
( 1st `  (
f `  n )
)  -  ( 2nd `  ( f `  n
) ) ) ) )
5551, 52, 54syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( 1st `  (
f `  n )
) ( abs  o.  -  ) ( 2nd `  ( f `  n
) ) )  =  ( abs `  (
( 1st `  (
f `  n )
)  -  ( 2nd `  ( f `  n
) ) ) ) )
56 abssub 14066 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  (
f `  n )
)  e.  CC  /\  ( 2nd `  ( f `
 n ) )  e.  CC )  -> 
( abs `  (
( 1st `  (
f `  n )
)  -  ( 2nd `  ( f `  n
) ) ) )  =  ( abs `  (
( 2nd `  (
f `  n )
)  -  ( 1st `  ( f `  n
) ) ) ) )
5751, 52, 56syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( abs `  ( ( 1st `  ( f `  n
) )  -  ( 2nd `  ( f `  n ) ) ) )  =  ( abs `  ( ( 2nd `  (
f `  n )
)  -  ( 1st `  ( f `  n
) ) ) ) )
5823, 25, 31abssubge0d 14170 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( abs `  ( ( 2nd `  ( f `  n
) )  -  ( 1st `  ( f `  n ) ) ) )  =  ( ( 2nd `  ( f `
 n ) )  -  ( 1st `  (
f `  n )
) ) )
5955, 57, 583eqtrd 2660 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( 1st `  (
f `  n )
) ( abs  o.  -  ) ( 2nd `  ( f `  n
) ) )  =  ( ( 2nd `  (
f `  n )
)  -  ( 1st `  ( f `  n
) ) ) )
6047, 50, 593eqtrd 2660 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( abs  o.  -  ) `  ( f `  n
) )  =  ( ( 2nd `  (
f `  n )
)  -  ( 1st `  ( f `  n
) ) ) )
6134, 46, 603eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  (
( vol  o.  (,) ) `  ( f `  n ) )  =  ( ( abs  o.  -  ) `  (
f `  n )
) )
6261mpteq2dva 4744 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( n  e.  NN  |->  ( ( vol 
o.  (,) ) `  (
f `  n )
) )  =  ( n  e.  NN  |->  ( ( abs  o.  -  ) `  ( f `  n ) ) ) )
63 volioof 40204 . . . . . . . . . . . . . 14  |-  ( vol 
o.  (,) ) : (
RR*  X.  RR* ) --> ( 0 [,] +oo )
6463a1i 11 . . . . . . . . . . . . 13  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( vol  o.  (,) ) : ( RR*  X. 
RR* ) --> ( 0 [,] +oo ) )
6539a1i 11 . . . . . . . . . . . . . 14  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( RR  X.  RR )  C_  ( RR*  X. 
RR* ) )
6612, 65fssd 6057 . . . . . . . . . . . . 13  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> ( RR*  X.  RR* )
)
67 fcompt 6400 . . . . . . . . . . . . 13  |-  ( ( ( vol  o.  (,) ) : ( RR*  X.  RR* )
--> ( 0 [,] +oo )  /\  f : NN --> ( RR*  X.  RR* )
)  ->  ( ( vol  o.  (,) )  o.  f )  =  ( n  e.  NN  |->  ( ( vol  o.  (,) ) `  ( f `  n ) ) ) )
6864, 66, 67syl2anc 693 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( vol 
o.  (,) )  o.  f
)  =  ( n  e.  NN  |->  ( ( vol  o.  (,) ) `  ( f `  n
) ) ) )
69 absf 14077 . . . . . . . . . . . . . . 15  |-  abs : CC
--> RR
70 subf 10283 . . . . . . . . . . . . . . 15  |-  -  :
( CC  X.  CC )
--> CC
71 fco 6058 . . . . . . . . . . . . . . 15  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
7269, 70, 71mp2an 708 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
7372a1i 11 . . . . . . . . . . . . 13  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
74 rr2sscn2 39582 . . . . . . . . . . . . . . 15  |-  ( RR 
X.  RR )  C_  ( CC  X.  CC )
7574a1i 11 . . . . . . . . . . . . . 14  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( RR  X.  RR )  C_  ( CC 
X.  CC ) )
7612, 75fssd 6057 . . . . . . . . . . . . 13  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> ( CC  X.  CC ) )
77 fcompt 6400 . . . . . . . . . . . . 13  |-  ( ( ( abs  o.  -  ) : ( CC  X.  CC ) --> RR  /\  f : NN --> ( CC  X.  CC ) )  ->  (
( abs  o.  -  )  o.  f )  =  ( n  e.  NN  |->  ( ( abs  o.  -  ) `  ( f `  n ) ) ) )
7873, 76, 77syl2anc 693 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( abs 
o.  -  )  o.  f )  =  ( n  e.  NN  |->  ( ( abs  o.  -  ) `  ( f `  n ) ) ) )
7962, 68, 783eqtr4d 2666 . . . . . . . . . . 11  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( vol 
o.  (,) )  o.  f
)  =  ( ( abs  o.  -  )  o.  f ) )
8079fveq2d 6195 . . . . . . . . . 10  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) )  =  (Σ^ `  (
( abs  o.  -  )  o.  f ) ) )
8180eqeq2d 2632 . . . . . . . . 9  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) )  <->  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) )
8281anbi2d 740 . . . . . . . 8  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( A 
C_  U. ran  ( (,) 
o.  f )  /\  y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) )  <->  ( A  C_ 
U. ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) ) )
8382rexbiia 3040 . . . . . . 7  |-  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) )  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) )
8483a1i 11 . . . . . 6  |-  ( y  e.  RR*  ->  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) )  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) ) )
8584rabbiia 3185 . . . . 5  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }
864, 85eqtr2i 2645 . . . 4  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) }  =  M
8786infeq1i 8384 . . 3  |- inf ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) } ,  RR* ,  <  )  = inf ( M ,  RR* ,  <  )
8887a1i 11 . 2  |-  ( ph  -> inf ( { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  (Σ^ `  ( ( abs  o.  -  )  o.  f
) ) ) } ,  RR* ,  <  )  = inf ( M ,  RR* ,  <  ) )
893, 88eqtrd 2656 1  |-  ( ph  ->  ( vol* `  A )  = inf ( M ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   (,)cioo 12175   [,]cicc 12178   abscabs 13974   vol*covol 23231   volcvol 23232  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-sumge0 40580
This theorem is referenced by:  ovolval4lem2  40864
  Copyright terms: Public domain W3C validator