MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phiprmpw Structured version   Visualization version   Unicode version

Theorem phiprmpw 15481
Description: Value of the Euler  phi function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )

Proof of Theorem phiprmpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prmnn 15388 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 11299 . . . 4  |-  ( K  e.  NN  ->  K  e.  NN0 )
3 nnexpcl 12873 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  NN )
41, 2, 3syl2an 494 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  NN )
5 phival 15472 . . 3  |-  ( ( P ^ K )  e.  NN  ->  ( phi `  ( P ^ K ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
64, 5syl 17 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
7 nnm1nn0 11334 . . . . . 6  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
8 nnexpcl 12873 . . . . . 6  |-  ( ( P  e.  NN  /\  ( K  -  1
)  e.  NN0 )  ->  ( P ^ ( K  -  1 ) )  e.  NN )
91, 7, 8syl2an 494 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  NN )
109nncnd 11036 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  CC )
111nncnd 11036 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  CC )
1211adantr 481 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  CC )
13 ax-1cn 9994 . . . . 5  |-  1  e.  CC
14 subdi 10463 . . . . 5  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC  /\  1  e.  CC )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1513, 14mp3an3 1413 . . . 4  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC )  ->  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^ ( K  - 
1 ) )  x.  1 ) ) )
1610, 12, 15syl2anc 693 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1710mulid1d 10057 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  1 )  =  ( P ^
( K  -  1 ) ) )
1817oveq2d 6666 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( ( P ^ ( K  -  1 ) )  x.  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( P ^ ( K  -  1 ) ) ) )
19 inrab 3899 . . . . . . 7  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }
20 elfzelz 12342 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 ... ( P ^ K
) )  ->  x  e.  ZZ )
21 prmz 15389 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
22 rpexp 15432 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
2321, 22syl3an1 1359 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
24233expa 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  x  e.  ZZ )  /\  K  e.  NN )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
2524an32s 846 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
26 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
27 zexpcl 12875 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  ZZ  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  ZZ )
2821, 2, 27syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ZZ )
2928adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P ^ K )  e.  ZZ )
30 gcdcom 15235 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( P ^ K )  e.  ZZ )  -> 
( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
3126, 29, 30syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
3231eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  ( ( P ^ K )  gcd  x )  =  1 ) )
33 coprm 15423 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
3433adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
3525, 32, 343bitr4d 300 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  x
) )
36 zcn 11382 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
3736adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  CC )
3837subid1d 10381 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  - 
0 )  =  x )
3938breq2d 4665 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P  ||  ( x  -  0
)  <->  P  ||  x ) )
4039notbid 308 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  ( x  -  0 )  <->  -.  P  ||  x
) )
4135, 40bitr4d 271 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
4220, 41sylan2 491 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
4342biimpd 219 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  -  0 ) ) )
44 imnan 438 . . . . . . . . . 10  |-  ( ( ( x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  - 
0 ) )  <->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
4543, 44sylib 208 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
4645ralrimiva 2966 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
47 rabeq0 3957 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) }  =  (/)  <->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
4846, 47sylibr 224 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }  =  (/) )
4919, 48syl5eq 2668 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )
50 fzfi 12771 . . . . . . . 8  |-  ( 1 ... ( P ^ K ) )  e. 
Fin
51 ssrab2 3687 . . . . . . . 8  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } 
C_  ( 1 ... ( P ^ K
) )
52 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... ( P ^ K ) )  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  C_  ( 1 ... ( P ^ K ) ) )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin )
5350, 51, 52mp2an 708 . . . . . . 7  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin
54 ssrab2 3687 . . . . . . . 8  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) }  C_  ( 1 ... ( P ^ K ) )
55 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... ( P ^ K ) )  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } 
C_  ( 1 ... ( P ^ K
) ) )  ->  { x  e.  (
1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) }  e.  Fin )
5650, 54, 55mp2an 708 . . . . . . 7  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) }  e.  Fin
57 hashun 13171 . . . . . . 7  |-  ( ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) }  e.  Fin  /\  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )  -> 
( # `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
5853, 56, 57mp3an12 1414 . . . . . 6  |-  ( ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  (/)  ->  ( # `  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
5949, 58syl 17 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
6042biimprd 238 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  P  ||  ( x  - 
0 )  ->  (
x  gcd  ( P ^ K ) )  =  1 ) )
6160con1d 139 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) )
6261orrd 393 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) )
6362ralrimiva 2966 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
64 rabid2 3118 . . . . . . . . 9  |-  ( ( 1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }  <->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
6563, 64sylibr 224 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) } )
66 unrab 3898 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }
6765, 66syl6reqr 2675 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  ( 1 ... ( P ^ K ) ) )
6867fveq2d 6195 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( # `  (
1 ... ( P ^ K ) ) ) )
694nnnn0d 11351 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e. 
NN0 )
70 hashfz1 13134 . . . . . . 7  |-  ( ( P ^ K )  e.  NN0  ->  ( # `  ( 1 ... ( P ^ K ) ) )  =  ( P ^ K ) )
7169, 70syl 17 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( 1 ... ( P ^ K
) ) )  =  ( P ^ K
) )
72 expm1t 12888 . . . . . . 7  |-  ( ( P  e.  CC  /\  K  e.  NN )  ->  ( P ^ K
)  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
7311, 72sylan 488 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
7468, 71, 733eqtrd 2660 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
751adantr 481 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  NN )
76 1zzd 11408 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  1  e.  ZZ )
77 nn0uz 11722 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
78 1m1e0 11089 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
7978fveq2i 6194 . . . . . . . . . . 11  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
8077, 79eqtr4i 2647 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
8169, 80syl6eleq 2711 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ( ZZ>= `  ( 1  -  1 ) ) )
82 0zd 11389 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  0  e.  ZZ )
8375, 76, 81, 82hashdvds 15480 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( ( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) ) )
844nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  CC )
8584subid1d 10381 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ K
)  -  0 )  =  ( P ^ K ) )
8685oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( ( P ^ K )  /  P ) )
8775nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  =/=  0 )
88 nnz 11399 . . . . . . . . . . . . . 14  |-  ( K  e.  NN  ->  K  e.  ZZ )
8988adantl 482 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  K  e.  ZZ )
9012, 87, 89expm1d 13018 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  =  ( ( P ^ K )  /  P
) )
9186, 90eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( P ^
( K  -  1 ) ) )
9291fveq2d 6195 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( |_ `  ( P ^ ( K  - 
1 ) ) ) )
939nnzd 11481 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  ZZ )
94 flid 12609 . . . . . . . . . . 11  |-  ( ( P ^ ( K  -  1 ) )  e.  ZZ  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
9593, 94syl 17 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
9692, 95eqtrd 2656 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( P ^ ( K  -  1 ) ) )
9778oveq1i 6660 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  -  0 )  =  ( 0  -  0 )
98 0m0e0 11130 . . . . . . . . . . . . . 14  |-  ( 0  -  0 )  =  0
9997, 98eqtri 2644 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  -  0 )  =  0
10099oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( ( 1  -  1 )  -  0 )  /  P )  =  ( 0  /  P
)
10112, 87div0d 10800 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
0  /  P )  =  0 )
102100, 101syl5eq 2668 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( 1  -  1 )  -  0 )  /  P )  =  0 )
103102fveq2d 6195 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  ( |_ `  0
) )
104 0z 11388 . . . . . . . . . . 11  |-  0  e.  ZZ
105 flid 12609 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  ( |_ `  0 )  =  0 )
106104, 105ax-mp 5 . . . . . . . . . 10  |-  ( |_
`  0 )  =  0
107103, 106syl6eq 2672 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  0 )
10896, 107oveq12d 6668 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) )  =  ( ( P ^ ( K  - 
1 ) )  - 
0 ) )
10910subid1d 10381 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  -  0 )  =  ( P ^
( K  -  1 ) ) )
11083, 108, 1093eqtrd 2660 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( P ^ ( K  -  1 ) ) )
111110oveq2d 6666 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^
( K  -  1 ) ) ) )
112 hashcl 13147 . . . . . . . . 9  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  ->  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0 )
11353, 112ax-mp 5 . . . . . . . 8  |-  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0
114113nn0cni 11304 . . . . . . 7  |-  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC
115 addcom 10222 . . . . . . 7  |-  ( ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC  /\  ( P ^ ( K  - 
1 ) )  e.  CC )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^ ( K  - 
1 ) ) )  =  ( ( P ^ ( K  - 
1 ) )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
116114, 10, 115sylancr 695 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^ ( K  - 
1 ) ) )  =  ( ( P ^ ( K  - 
1 ) )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
117111, 116eqtrd 2656 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( P ^
( K  -  1 ) )  +  (
# `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
11859, 74, 1173eqtr3rd 2665 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  +  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
11910, 12mulcld 10060 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  P )  e.  CC )
120114a1i 11 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC )
121119, 10, 120subaddd 10410 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( ( P ^ ( K  - 
1 ) )  x.  P )  -  ( P ^ ( K  - 
1 ) ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  <-> 
( ( P ^
( K  -  1 ) )  +  (
# `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) ) )
122118, 121mpbird 247 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( P ^ ( K  - 
1 ) ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
12316, 18, 1223eqtrrd 2661 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  =  ( ( P ^ ( K  -  1 ) )  x.  ( P  - 
1 ) ) )
1246, 123eqtrd 2656 1  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591   ^cexp 12860   #chash 13117    || cdvds 14983    gcd cgcd 15216   Primecprime 15385   phicphi 15469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  phiprm  15482
  Copyright terms: Public domain W3C validator