MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsplit2 Structured version   Visualization version   Unicode version

Theorem fzsplit2 12366
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )

Proof of Theorem fzsplit2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12342 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
21zred 11482 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  x  e.  RR )
3 eluzel2 11692 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
43adantl 482 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ZZ )
54zred 11482 . . . . . 6  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  RR )
6 lelttric 10144 . . . . . 6  |-  ( ( x  e.  RR  /\  K  e.  RR )  ->  ( x  <_  K  \/  K  <  x ) )
72, 5, 6syl2anr 495 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  <_  K  \/  K  <  x ) )
8 elfzuz 12338 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  ( ZZ>= `  M )
)
9 elfz5 12334 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
x  e.  ( M ... K )  <->  x  <_  K ) )
108, 4, 9syl2anr 495 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  <-> 
x  <_  K )
)
11 simpl 473 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
12 eluzelz 11697 . . . . . . . . 9  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ZZ )
1311, 12syl 17 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ZZ )
14 eluz 11701 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
1513, 1, 14syl2an 494 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
16 elfzuz3 12339 . . . . . . . . 9  |-  ( x  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  x )
)
1716adantl 482 . . . . . . . 8  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  x ) )
18 elfzuzb 12336 . . . . . . . . 9  |-  ( x  e.  ( ( K  +  1 ) ... N )  <->  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  (
ZZ>= `  x ) ) )
1918rbaib 947 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  x
)  ->  ( x  e.  ( ( K  + 
1 ) ... N
)  <->  x  e.  ( ZZ>=
`  ( K  + 
1 ) ) ) )
2017, 19syl 17 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
x  e.  ( ZZ>= `  ( K  +  1
) ) ) )
21 zltp1le 11427 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ )  ->  ( K  <  x  <->  ( K  +  1 )  <_  x ) )
224, 1, 21syl2an 494 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( K  <  x  <->  ( K  +  1 )  <_  x ) )
2315, 20, 223bitr4d 300 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
K  <  x )
)
2410, 23orbi12d 746 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) )  <->  ( x  <_  K  \/  K  < 
x ) ) )
257, 24mpbird 247 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )
26 elfzuz 12338 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  x  e.  ( ZZ>= `  M )
)
2726adantl 482 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( ZZ>= `  M ) )
28 simpr 477 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  K )
)
29 elfzuz3 12339 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  K  e.  ( ZZ>= `  x )
)
30 uztrn 11704 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  x )
)  ->  N  e.  ( ZZ>= `  x )
)
3128, 29, 30syl2an 494 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  N  e.  ( ZZ>= `  x ) )
32 elfzuzb 12336 . . . . . 6  |-  ( x  e.  ( M ... N )  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  x ) ) )
3327, 31, 32sylanbrc 698 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( M ... N ) )
34 elfzuz 12338 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  x  e.  ( ZZ>= `  ( K  +  1 ) ) )
35 uztrn 11704 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  ( K  +  1
) )  /\  ( K  +  1 )  e.  ( ZZ>= `  M
) )  ->  x  e.  ( ZZ>= `  M )
)
3634, 11, 35syl2anr 495 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  (
ZZ>= `  M ) )
37 elfzuz3 12339 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  x )
)
3837adantl 482 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  N  e.  (
ZZ>= `  x ) )
3936, 38, 32sylanbrc 698 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  ( M ... N ) )
4033, 39jaodan 826 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  ( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )  ->  x  e.  ( M ... N ) )
4125, 40impbida 877 . . 3  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) ) )
42 elun 3753 . . 3  |-  ( x  e.  ( ( M ... K )  u.  ( ( K  + 
1 ) ... N
) )  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) )
4341, 42syl6bbr 278 . 2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  x  e.  (
( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) ) )
4443eqrdv 2620 1  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  fzsplit  12367  fzpred  12389  fz0to4untppr  12442  fallfacval4  14774  fsumharmonic  24738  gausslemma2dlem6  25097  dchrisum0lem1b  25204  dchrisum0lem1  25205  dchrisum0lem3  25208  pntrsumbnd2  25256  pntrlog2bndlem6a  25271  pntlemf  25294  fzspl  29550  poimirlem1  33410  poimirlem2  33411  poimirlem3  33412  poimirlem4  33413  poimirlem6  33415  poimirlem7  33416  poimirlem8  33417  poimirlem12  33421  poimirlem13  33422  poimirlem14  33423  poimirlem16  33425  poimirlem17  33426  poimirlem18  33427  poimirlem19  33428  poimirlem20  33429  poimirlem21  33430  poimirlem22  33431  poimirlem23  33432  poimirlem24  33433  poimirlem25  33434  poimirlem26  33435  poimirlem28  33437  poimirlem29  33438  poimirlem31  33440  poimirlem32  33441
  Copyright terms: Public domain W3C validator