Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem18 Structured version   Visualization version   Unicode version

Theorem poimirlem18 33427
Description: Lemma for poimir 33442 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem18.3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
poimirlem18.4  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
Assertion
Ref Expression
poimirlem18  |-  ( ph  ->  E! z  e.  S  z  =/=  T )
Distinct variable groups:    f, j, n, p, t, y, z    ph, j, n, y    j, F, n, y    j, N, n, y    T, j, n, y    ph, p, t    f, K, j, n, p, t    f, N, p, t    T, f, p    ph, z    f, F, p, t, z    z, K    z, N    t, T, z    S, j, n, p, t, y, z
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem18
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3  |-  ( ph  ->  N  e.  NN )
2 poimirlem22.s . . 3  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
3 poimirlem22.1 . . 3  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
4 poimirlem22.2 . . 3  |-  ( ph  ->  T  e.  S )
5 poimirlem18.3 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
6 poimirlem18.4 . . 3  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
71, 2, 3, 4, 5, 6poimirlem17 33426 . 2  |-  ( ph  ->  E. z  e.  S  z  =/=  T )
86adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  e.  S )  ->  ( 2nd `  T )  =  0 )
9 0nnn 11052 . . . . . . . . . . . . 13  |-  -.  0  e.  NN
10 elfznn 12370 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 1 ... ( N  -  1 ) )  ->  0  e.  NN )
119, 10mto 188 . . . . . . . . . . . 12  |-  -.  0  e.  ( 1 ... ( N  -  1 ) )
12 eleq1 2689 . . . . . . . . . . . 12  |-  ( ( 2nd `  z )  =  0  ->  (
( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  <->  0  e.  ( 1 ... ( N  -  1 ) ) ) )
1311, 12mtbiri 317 . . . . . . . . . . 11  |-  ( ( 2nd `  z )  =  0  ->  -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )
1413necon2ai 2823 . . . . . . . . . 10  |-  ( ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  z )  =/=  0 )
151ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  NN )
16 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  ( 2nd `  t )  =  ( 2nd `  z
) )
1716breq2d 4665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  z  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  z ) ) )
1817ifbid 4108 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  z  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) ) )
1918csbeq1d 3540 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  z  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
20 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  ( 1st `  t )  =  ( 1st `  z
) )
2120fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  z  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  z ) ) )
2220fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  z  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  z ) ) )
2322imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  z  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) ) )
2423xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( 1 ... j
) )  X.  {
1 } ) )
2522imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  z  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) ) )
2625xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
2724, 26uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  z  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
2821, 27oveq12d 6668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  z  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
2928csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  z  ->  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
3019, 29eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  z  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
3130mpteq2dv 4745 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  z  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
3231eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( t  =  z  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
3332, 2elrab2 3366 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  <->  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
3433simprbi 480 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
3534ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
36 elrabi 3359 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  z  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
3736, 2eleq2s 2719 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  S  ->  z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
38 xp1st 7198 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
3937, 38syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  S  ->  ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
40 xp1st 7198 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  z ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
4139, 40syl 17 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) ) )
42 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( 1st `  z ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  z ) ) : ( 1 ... N ) --> ( 0..^ K ) )
4341, 42syl 17 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ( 0..^ K ) )
44 elfzoelz 12470 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 0..^ K )  ->  n  e.  ZZ )
4544ssriv 3607 . . . . . . . . . . . . . . . 16  |-  ( 0..^ K )  C_  ZZ
46 fss 6056 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  ( 1st `  z ) ) : ( 1 ... N ) --> ( 0..^ K )  /\  (
0..^ K )  C_  ZZ )  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ZZ )
4743, 45, 46sylancl 694 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ZZ )
4847ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ZZ )
49 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  z ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
5039, 49syl 17 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) )  e.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
51 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  ( 1st `  z
) )  e.  _V
52 f1oeq1 6127 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( 2nd `  ( 1st `  z ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
5351, 52elab 3350 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  z ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
5450, 53sylib 208 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
5554ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
56 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )
5715, 35, 48, 55, 56poimirlem1 33410 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  -.  E* n  e.  (
1 ... N ) ( ( F `  (
( 2nd `  z
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  z
) ) `  n
) )
581ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  N  e.  NN )
59 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
6059breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
6160ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
6261csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
63 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
6463fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
6563fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
6665imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
6766xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
6865imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
6968xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
7067, 69uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
7164, 70oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
7271csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
7362, 72eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
7473mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
7574eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
7675, 2elrab2 3366 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
7776simprbi 480 . . . . . . . . . . . . . . . . . . 19  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
784, 77syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
7978ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
80 elrabi 3359 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
8180, 2eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
824, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
83 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
85 xp1st 7198 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
87 elmapi 7879 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
8886, 87syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
89 fss 6056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K )  /\  (
0..^ K )  C_  ZZ )  ->  ( 1st `  ( 1st `  T
) ) : ( 1 ... N ) --> ZZ )
9088, 45, 89sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ZZ )
9190ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  ( 1st `  ( 1st `  T
) ) : ( 1 ... N ) --> ZZ )
92 xp2nd 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
9384, 92syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
94 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
95 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
9694, 95elab 3350 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
9793, 96sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
9897ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
99 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )
100 xp2nd 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  T )  e.  ( 0 ... N
) )
10182, 100syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 0 ... N ) )
102101adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  e.  ( 0 ... N ) )
103 eldifsn 4317 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  T )  e.  ( ( 0 ... N )  \  { ( 2nd `  z
) } )  <->  ( ( 2nd `  T )  e.  ( 0 ... N
)  /\  ( 2nd `  T )  =/=  ( 2nd `  z ) ) )
104103biimpri 218 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  T
)  e.  ( 0 ... N )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  ( 2nd `  T )  e.  ( ( 0 ... N )  \  {
( 2nd `  z
) } ) )
105102, 104sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  ( 2nd `  T )  e.  ( ( 0 ... N )  \  {
( 2nd `  z
) } ) )
10658, 79, 91, 98, 99, 105poimirlem2 33411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  =/=  ( 2nd `  z
) )  ->  E* n  e.  ( 1 ... N ) ( ( F `  (
( 2nd `  z
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  z
) ) `  n
) )
107106ex 450 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( ( 2nd `  T )  =/=  ( 2nd `  z
)  ->  E* n  e.  ( 1 ... N
) ( ( F `
 ( ( 2nd `  z )  -  1 ) ) `  n
)  =/=  ( ( F `  ( 2nd `  z ) ) `  n ) ) )
108107necon1bd 2812 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( -.  E* n  e.  (
1 ... N ) ( ( F `  (
( 2nd `  z
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  z
) ) `  n
)  ->  ( 2nd `  T )  =  ( 2nd `  z ) ) )
109108adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( -.  E* n  e.  ( 1 ... N ) ( ( F `  ( ( 2nd `  z
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  z
) ) `  n
)  ->  ( 2nd `  T )  =  ( 2nd `  z ) ) )
11057, 109mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  =  ( 2nd `  z
) )
111110neeq1d 2853 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  S )  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  =/=  0  <->  ( 2nd `  z )  =/=  0 ) )
112111exbiri 652 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  S )  ->  (
( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  -> 
( ( 2nd `  z
)  =/=  0  -> 
( 2nd `  T
)  =/=  0 ) ) )
11314, 112mpdi 45 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  S )  ->  (
( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  -> 
( 2nd `  T
)  =/=  0 ) )
114113necon2bd 2810 . . . . . . . 8  |-  ( (
ph  /\  z  e.  S )  ->  (
( 2nd `  T
)  =  0  ->  -.  ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) ) ) )
1158, 114mpd 15 . . . . . . 7  |-  ( (
ph  /\  z  e.  S )  ->  -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )
116 xp2nd 7199 . . . . . . . . 9  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  z )  e.  ( 0 ... N
) )
11737, 116syl 17 . . . . . . . 8  |-  ( z  e.  S  ->  ( 2nd `  z )  e.  ( 0 ... N
) )
1181nncnd 11036 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  CC )
119 npcan1 10455 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
120118, 119syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
121 nnuz 11723 . . . . . . . . . . . . . . . . . . 19  |-  NN  =  ( ZZ>= `  1 )
1221, 121syl6eleq 2711 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
123120, 122eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
1241nnzd 11481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  ZZ )
125 peano2zm 11420 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
126124, 125syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
127 uzid 11702 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
128 peano2uz 11741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
129126, 127, 1283syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
130120, 129eqeltrrd 2702 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
131 fzsplit2 12366 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
132123, 130, 131syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
133120oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
134 fzsn 12383 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
135124, 134syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( N ... N
)  =  { N } )
136133, 135eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
137136uneq2d 3767 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
138132, 137eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
139138eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  z
)  e.  ( 1 ... N )  <->  ( 2nd `  z )  e.  ( ( 1 ... ( N  -  1 ) )  u.  { N } ) ) )
140139notbid 308 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  ( 2nd `  z )  e.  ( 1 ... N )  <->  -.  ( 2nd `  z
)  e.  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) ) )
141 ioran 511 . . . . . . . . . . . . . 14  |-  ( -.  ( ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  \/  ( 2nd `  z
)  =  N )  <-> 
( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N ) )
142 elun 3753 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  z )  e.  ( ( 1 ... ( N  - 
1 ) )  u. 
{ N } )  <-> 
( ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  \/  ( 2nd `  z
)  e.  { N } ) )
143 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  z )  e.  _V
144143elsn 4192 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  z )  e.  { N }  <->  ( 2nd `  z )  =  N )
145144orbi2i 541 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  \/  ( 2nd `  z
)  e.  { N } )  <->  ( ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  \/  ( 2nd `  z )  =  N ) )
146142, 145bitri 264 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  z )  e.  ( ( 1 ... ( N  - 
1 ) )  u. 
{ N } )  <-> 
( ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  \/  ( 2nd `  z
)  =  N ) )
147141, 146xchnxbir 323 . . . . . . . . . . . . 13  |-  ( -.  ( 2nd `  z
)  e.  ( ( 1 ... ( N  -  1 ) )  u.  { N }
)  <->  ( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N ) )
148140, 147syl6bb 276 . . . . . . . . . . . 12  |-  ( ph  ->  ( -.  ( 2nd `  z )  e.  ( 1 ... N )  <-> 
( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N ) ) )
149148anbi2d 740 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 2nd `  z )  e.  ( 0 ... N )  /\  -.  ( 2nd `  z )  e.  ( 1 ... N ) )  <->  ( ( 2nd `  z )  e.  ( 0 ... N )  /\  ( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N ) ) ) )
1501nnnn0d 11351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
151 nn0uz 11722 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
152150, 151syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
153 fzpred 12389 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( { 0 }  u.  ( ( 0  +  1 ) ... N ) ) )
154152, 153syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0 ... N
)  =  ( { 0 }  u.  (
( 0  +  1 ) ... N ) ) )
155154difeq1d 3727 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 0 ... N )  \  (
1 ... N ) )  =  ( ( { 0 }  u.  (
( 0  +  1 ) ... N ) )  \  ( 1 ... N ) ) )
156 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( { 0 }  u.  ( 1 ... N
) )  \  (
1 ... N ) )  =  ( { 0 }  \  ( 1 ... N ) )
157 0p1e1 11132 . . . . . . . . . . . . . . . . . 18  |-  ( 0  +  1 )  =  1
158157oveq1i 6660 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
159158uneq2i 3764 . . . . . . . . . . . . . . . 16  |-  ( { 0 }  u.  (
( 0  +  1 ) ... N ) )  =  ( { 0 }  u.  (
1 ... N ) )
160159difeq1i 3724 . . . . . . . . . . . . . . 15  |-  ( ( { 0 }  u.  ( ( 0  +  1 ) ... N
) )  \  (
1 ... N ) )  =  ( ( { 0 }  u.  (
1 ... N ) ) 
\  ( 1 ... N ) )
161 incom 3805 . . . . . . . . . . . . . . . . 17  |-  ( { 0 }  i^i  (
1 ... N ) )  =  ( ( 1 ... N )  i^i 
{ 0 } )
162 elfznn 12370 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  e.  ( 1 ... N )  ->  0  e.  NN )
1639, 162mto 188 . . . . . . . . . . . . . . . . . 18  |-  -.  0  e.  ( 1 ... N
)
164 disjsn 4246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... N
)  i^i  { 0 } )  =  (/)  <->  -.  0  e.  ( 1 ... N ) )
165163, 164mpbir 221 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... N )  i^i  { 0 } )  =  (/)
166161, 165eqtri 2644 . . . . . . . . . . . . . . . 16  |-  ( { 0 }  i^i  (
1 ... N ) )  =  (/)
167 disj3 4021 . . . . . . . . . . . . . . . 16  |-  ( ( { 0 }  i^i  ( 1 ... N
) )  =  (/)  <->  {
0 }  =  ( { 0 }  \ 
( 1 ... N
) ) )
168166, 167mpbi 220 . . . . . . . . . . . . . . 15  |-  { 0 }  =  ( { 0 }  \  (
1 ... N ) )
169156, 160, 1683eqtr4i 2654 . . . . . . . . . . . . . 14  |-  ( ( { 0 }  u.  ( ( 0  +  1 ) ... N
) )  \  (
1 ... N ) )  =  { 0 }
170155, 169syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 0 ... N )  \  (
1 ... N ) )  =  { 0 } )
171170eleq2d 2687 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2nd `  z
)  e.  ( ( 0 ... N ) 
\  ( 1 ... N ) )  <->  ( 2nd `  z )  e.  {
0 } ) )
172 eldif 3584 . . . . . . . . . . . 12  |-  ( ( 2nd `  z )  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  <->  ( ( 2nd `  z )  e.  ( 0 ... N
)  /\  -.  ( 2nd `  z )  e.  ( 1 ... N
) ) )
173143elsn 4192 . . . . . . . . . . . 12  |-  ( ( 2nd `  z )  e.  { 0 }  <-> 
( 2nd `  z
)  =  0 )
174171, 172, 1733bitr3g 302 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 2nd `  z )  e.  ( 0 ... N )  /\  -.  ( 2nd `  z )  e.  ( 1 ... N ) )  <->  ( 2nd `  z
)  =  0 ) )
175149, 174bitr3d 270 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2nd `  z )  e.  ( 0 ... N )  /\  ( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N ) )  <->  ( 2nd `  z )  =  0 ) )
176175biimpd 219 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2nd `  z )  e.  ( 0 ... N )  /\  ( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N ) )  -> 
( 2nd `  z
)  =  0 ) )
177176expdimp 453 . . . . . . . 8  |-  ( (
ph  /\  ( 2nd `  z )  e.  ( 0 ... N ) )  ->  ( ( -.  ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  /\  -.  ( 2nd `  z
)  =  N )  ->  ( 2nd `  z
)  =  0 ) )
178117, 177sylan2 491 . . . . . . 7  |-  ( (
ph  /\  z  e.  S )  ->  (
( -.  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  /\  -.  ( 2nd `  z )  =  N )  ->  ( 2nd `  z )  =  0 ) )
179115, 178mpand 711 . . . . . 6  |-  ( (
ph  /\  z  e.  S )  ->  ( -.  ( 2nd `  z
)  =  N  -> 
( 2nd `  z
)  =  0 ) )
1801, 2, 3poimirlem13 33422 . . . . . . . . . 10  |-  ( ph  ->  E* z  e.  S  ( 2nd `  z )  =  0 )
181 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  s  ->  ( 2nd `  z )  =  ( 2nd `  s
) )
182181eqeq1d 2624 . . . . . . . . . . 11  |-  ( z  =  s  ->  (
( 2nd `  z
)  =  0  <->  ( 2nd `  s )  =  0 ) )
183182rmo4 3399 . . . . . . . . . 10  |-  ( E* z  e.  S  ( 2nd `  z )  =  0  <->  A. z  e.  S  A. s  e.  S  ( (
( 2nd `  z
)  =  0  /\  ( 2nd `  s
)  =  0 )  ->  z  =  s ) )
184180, 183sylib 208 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  S  A. s  e.  S  ( ( ( 2nd `  z )  =  0  /\  ( 2nd `  s
)  =  0 )  ->  z  =  s ) )
185184r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  z  e.  S )  ->  A. s  e.  S  ( (
( 2nd `  z
)  =  0  /\  ( 2nd `  s
)  =  0 )  ->  z  =  s ) )
1864adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  e.  S )  ->  T  e.  S )
187 fveq2 6191 . . . . . . . . . . . 12  |-  ( s  =  T  ->  ( 2nd `  s )  =  ( 2nd `  T
) )
188187eqeq1d 2624 . . . . . . . . . . 11  |-  ( s  =  T  ->  (
( 2nd `  s
)  =  0  <->  ( 2nd `  T )  =  0 ) )
189188anbi2d 740 . . . . . . . . . 10  |-  ( s  =  T  ->  (
( ( 2nd `  z
)  =  0  /\  ( 2nd `  s
)  =  0 )  <-> 
( ( 2nd `  z
)  =  0  /\  ( 2nd `  T
)  =  0 ) ) )
190 eqeq2 2633 . . . . . . . . . 10  |-  ( s  =  T  ->  (
z  =  s  <->  z  =  T ) )
191189, 190imbi12d 334 . . . . . . . . 9  |-  ( s  =  T  ->  (
( ( ( 2nd `  z )  =  0  /\  ( 2nd `  s
)  =  0 )  ->  z  =  s )  <->  ( ( ( 2nd `  z )  =  0  /\  ( 2nd `  T )  =  0 )  ->  z  =  T ) ) )
192191rspccv 3306 . . . . . . . 8  |-  ( A. s  e.  S  (
( ( 2nd `  z
)  =  0  /\  ( 2nd `  s
)  =  0 )  ->  z  =  s )  ->  ( T  e.  S  ->  ( ( ( 2nd `  z
)  =  0  /\  ( 2nd `  T
)  =  0 )  ->  z  =  T ) ) )
193185, 186, 192sylc 65 . . . . . . 7  |-  ( (
ph  /\  z  e.  S )  ->  (
( ( 2nd `  z
)  =  0  /\  ( 2nd `  T
)  =  0 )  ->  z  =  T ) )
1948, 193mpan2d 710 . . . . . 6  |-  ( (
ph  /\  z  e.  S )  ->  (
( 2nd `  z
)  =  0  -> 
z  =  T ) )
195179, 194syld 47 . . . . 5  |-  ( (
ph  /\  z  e.  S )  ->  ( -.  ( 2nd `  z
)  =  N  -> 
z  =  T ) )
196195necon1ad 2811 . . . 4  |-  ( (
ph  /\  z  e.  S )  ->  (
z  =/=  T  -> 
( 2nd `  z
)  =  N ) )
197196ralrimiva 2966 . . 3  |-  ( ph  ->  A. z  e.  S  ( z  =/=  T  ->  ( 2nd `  z
)  =  N ) )
1981, 2, 3poimirlem14 33423 . . 3  |-  ( ph  ->  E* z  e.  S  ( 2nd `  z )  =  N )
199 rmoim 3407 . . 3  |-  ( A. z  e.  S  (
z  =/=  T  -> 
( 2nd `  z
)  =  N )  ->  ( E* z  e.  S  ( 2nd `  z )  =  N  ->  E* z  e.  S  z  =/=  T
) )
200197, 198, 199sylc 65 . 2  |-  ( ph  ->  E* z  e.  S  z  =/=  T )
201 reu5 3159 . 2  |-  ( E! z  e.  S  z  =/=  T  <->  ( E. z  e.  S  z  =/=  T  /\  E* z  e.  S  z  =/=  T ) )
2027, 200, 201sylanbrc 698 1  |-  ( ph  ->  E! z  e.  S  z  =/=  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   E*wrmo 2915   {crab 2916   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   "cima 5117   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem22  33431
  Copyright terms: Public domain W3C validator