MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmunb Structured version   Visualization version   Unicode version

Theorem prmunb 15618
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Distinct variable group:    N, p

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 11299 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 13070 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3 elnnuz 11724 . . . . 5  |-  ( ( ! `  N )  e.  NN  <->  ( ! `  N )  e.  (
ZZ>= `  1 ) )
4 eluzp1p1 11713 . . . . . 6  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
5 df-2 11079 . . . . . . 7  |-  2  =  ( 1  +  1 )
65fveq2i 6194 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
74, 6syl6eleqr 2712 . . . . 5  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  2 )
)
83, 7sylbi 207 . . . 4  |-  ( ( ! `  N )  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
) )
9 exprmfct 15416 . . . 4  |-  ( ( ( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
102, 8, 93syl 18 . . 3  |-  ( N  e.  NN0  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
11 prmz 15389 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  ZZ )
12 nn0z 11400 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13 eluz 11701 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  p )  <->  p  <_  N ) )
1411, 12, 13syl2an 494 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  <->  p  <_  N ) )
15 prmuz2 15408 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
16 eluz2b2 11761 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1715, 16sylib 208 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p  e.  NN  /\  1  <  p ) )
1817adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( p  e.  NN  /\  1  < 
p ) )
1918simpld 475 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN )
2019nnnn0d 11351 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN0 )
21 eluznn0 11757 . . . . . . . . . . . . 13  |-  ( ( p  e.  NN0  /\  N  e.  ( ZZ>= `  p ) )  ->  N  e.  NN0 )
2220, 21sylancom 701 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  N  e.  NN0 )
23 nnz 11399 . . . . . . . . . . . 12  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  ZZ )
2422, 2, 233syl 18 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( ! `  N )  e.  ZZ )
2518simprd 479 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  1  <  p )
26 dvdsfac 15048 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  N  e.  ( ZZ>= `  p ) )  ->  p  ||  ( ! `  N ) )
2719, 26sylancom 701 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  ||  ( ! `  N )
)
28 ndvdsp1 15135 . . . . . . . . . . . 12  |-  ( ( ( ! `  N
)  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  ->  (
p  ||  ( ! `  N )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
2928imp 445 . . . . . . . . . . 11  |-  ( ( ( ( ! `  N )  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  /\  p  ||  ( ! `  N ) )  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3024, 19, 25, 27, 29syl31anc 1329 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3130ex 450 . . . . . . . . 9  |-  ( p  e.  Prime  ->  ( N  e.  ( ZZ>= `  p
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3231adantr 481 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
3314, 32sylbird 250 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  <_  N  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3433con2d 129 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  ||  ( ( ! `  N )  +  1 )  ->  -.  p  <_  N ) )
3534ancoms 469 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  -.  p  <_  N ) )
36 nn0re 11301 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
3711zred 11482 . . . . . 6  |-  ( p  e.  Prime  ->  p  e.  RR )
38 ltnle 10117 . . . . . 6  |-  ( ( N  e.  RR  /\  p  e.  RR )  ->  ( N  <  p  <->  -.  p  <_  N )
)
3936, 37, 38syl2an 494 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( N  <  p  <->  -.  p  <_  N )
)
4035, 39sylibrd 249 . . . 4  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  N  <  p
) )
4140reximdva 3017 . . 3  |-  ( N  e.  NN0  ->  ( E. p  e.  Prime  p  ||  ( ( ! `  N )  +  1 )  ->  E. p  e.  Prime  N  <  p
) )
4210, 41mpd 15 . 2  |-  ( N  e.  NN0  ->  E. p  e.  Prime  N  <  p
)
431, 42syl 17 1  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   !cfa 13060    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-fac 13061  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prminf  15619  prmgaplem6  15760  nn0prpw  32318  prmunb2  38510  etransclem48  40499
  Copyright terms: Public domain W3C validator