Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhre Structured version   Visualization version   Unicode version

Theorem qqhre 30064
Description: The QQHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.)
Assertion
Ref Expression
qqhre  |-  (QQHom ` RRfld )  =  (  _I  |`  QQ )

Proof of Theorem qqhre
StepHypRef Expression
1 resubdrg 19954 . . . . . . 7  |-  ( RR  e.  (SubRing ` fld )  /\ RRfld  e.  DivRing )
21simpri 478 . . . . . 6  |- RRfld  e.  DivRing
3 drngring 18754 . . . . . . 7  |-  (RRfld  e.  DivRing  -> RRfld 
e.  Ring )
4 f1oi 6174 . . . . . . . . . . 11  |-  (  _I  |`  ZZ ) : ZZ -1-1-onto-> ZZ
5 f1of1 6136 . . . . . . . . . . 11  |-  ( (  _I  |`  ZZ ) : ZZ -1-1-onto-> ZZ  ->  (  _I  |`  ZZ ) : ZZ -1-1-> ZZ )
64, 5ax-mp 5 . . . . . . . . . 10  |-  (  _I  |`  ZZ ) : ZZ -1-1-> ZZ
7 zssre 11384 . . . . . . . . . 10  |-  ZZ  C_  RR
8 f1ss 6106 . . . . . . . . . 10  |-  ( ( (  _I  |`  ZZ ) : ZZ -1-1-> ZZ  /\  ZZ  C_  RR )  -> 
(  _I  |`  ZZ ) : ZZ -1-1-> RR )
96, 7, 8mp2an 708 . . . . . . . . 9  |-  (  _I  |`  ZZ ) : ZZ -1-1-> RR
10 zrhre 30063 . . . . . . . . . 10  |-  ( ZRHom ` RRfld )  =  (  _I  |`  ZZ )
11 f1eq1 6096 . . . . . . . . . 10  |-  ( ( ZRHom ` RRfld )  =  (  _I  |`  ZZ )  ->  ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR  <->  (  _I  |`  ZZ ) : ZZ -1-1-> RR ) )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR  <->  (  _I  |`  ZZ ) : ZZ -1-1-> RR )
139, 12mpbir 221 . . . . . . . 8  |-  ( ZRHom ` RRfld ) : ZZ -1-1-> RR
14 rebase 19952 . . . . . . . . 9  |-  RR  =  ( Base ` RRfld )
15 eqid 2622 . . . . . . . . 9  |-  ( ZRHom ` RRfld )  =  ( ZRHom ` RRfld )
16 re0g 19958 . . . . . . . . 9  |-  0  =  ( 0g ` RRfld )
1714, 15, 16zrhchr 30020 . . . . . . . 8  |-  (RRfld  e.  Ring 
->  ( (chr ` RRfld )  =  0  <->  ( ZRHom ` RRfld ) : ZZ -1-1-> RR ) )
1813, 17mpbiri 248 . . . . . . 7  |-  (RRfld  e.  Ring 
->  (chr ` RRfld )  =  0 )
192, 3, 18mp2b 10 . . . . . 6  |-  (chr ` RRfld )  =  0
20 eqid 2622 . . . . . . 7  |-  (/r ` RRfld )  =  (/r ` RRfld )
2114, 20, 15qqhf 30030 . . . . . 6  |-  ( (RRfld 
e.  DivRing  /\  (chr ` RRfld )  =  0 )  ->  (QQHom ` RRfld
) : QQ --> RR )
222, 19, 21mp2an 708 . . . . 5  |-  (QQHom ` RRfld ) : QQ --> RR
2322a1i 11 . . . 4  |-  ( T. 
->  (QQHom ` RRfld ) : QQ --> RR )
2423feqmptd 6249 . . 3  |-  ( T. 
->  (QQHom ` RRfld )  =  ( q  e.  QQ  |->  ( (QQHom ` RRfld ) `  q
) ) )
2524trud 1493 . 2  |-  (QQHom ` RRfld )  =  ( q  e.  QQ  |->  ( (QQHom ` RRfld ) `  q )
)
2614, 20, 15qqhvval 30027 . . . . 5  |-  ( ( (RRfld  e.  DivRing  /\  (chr ` RRfld
)  =  0 )  /\  q  e.  QQ )  ->  ( (QQHom ` RRfld ) `  q )  =  ( ( ( ZRHom ` RRfld ) `  (numer `  q ) ) (/r ` RRfld
) ( ( ZRHom ` RRfld ) `  (denom `  q ) ) ) )
272, 19, 26mpanl12 718 . . . 4  |-  ( q  e.  QQ  ->  (
(QQHom ` RRfld ) `  q
)  =  ( ( ( ZRHom ` RRfld ) `  (numer `  q ) ) (/r ` RRfld ) ( ( ZRHom ` RRfld ) `  (denom `  q ) ) ) )
28 f1f 6101 . . . . . . . 8  |-  ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR 
->  ( ZRHom ` RRfld ) : ZZ --> RR )
2913, 28ax-mp 5 . . . . . . 7  |-  ( ZRHom ` RRfld ) : ZZ --> RR
3029a1i 11 . . . . . 6  |-  ( q  e.  QQ  ->  ( ZRHom ` RRfld ) : ZZ --> RR )
31 qnumcl 15448 . . . . . 6  |-  ( q  e.  QQ  ->  (numer `  q )  e.  ZZ )
3230, 31ffvelrnd 6360 . . . . 5  |-  ( q  e.  QQ  ->  (
( ZRHom ` RRfld ) `  (numer `  q ) )  e.  RR )
33 qdencl 15449 . . . . . . 7  |-  ( q  e.  QQ  ->  (denom `  q )  e.  NN )
3433nnzd 11481 . . . . . 6  |-  ( q  e.  QQ  ->  (denom `  q )  e.  ZZ )
3530, 34ffvelrnd 6360 . . . . 5  |-  ( q  e.  QQ  ->  (
( ZRHom ` RRfld ) `  (denom `  q ) )  e.  RR )
3634anim1i 592 . . . . . . . 8  |-  ( ( q  e.  QQ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 )  ->  ( (denom `  q )  e.  ZZ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 ) )
3714, 15, 16zrhf1ker 30019 . . . . . . . . . . . 12  |-  (RRfld  e.  Ring 
->  ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR  <->  ( `' ( ZRHom ` RRfld ) " {
0 } )  =  { 0 } ) )
382, 3, 37mp2b 10 . . . . . . . . . . 11  |-  ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR  <->  ( `' ( ZRHom ` RRfld ) " { 0 } )  =  { 0 } )
3913, 38mpbi 220 . . . . . . . . . 10  |-  ( `' ( ZRHom ` RRfld ) " { 0 } )  =  { 0 }
4039eleq2i 2693 . . . . . . . . 9  |-  ( (denom `  q )  e.  ( `' ( ZRHom ` RRfld ) " { 0 } )  <->  (denom `  q )  e.  { 0 } )
41 ffn 6045 . . . . . . . . . 10  |-  ( ( ZRHom ` RRfld ) : ZZ --> RR  ->  ( ZRHom ` RRfld )  Fn  ZZ )
42 fniniseg 6338 . . . . . . . . . 10  |-  ( ( ZRHom ` RRfld )  Fn  ZZ  ->  ( (denom `  q
)  e.  ( `' ( ZRHom ` RRfld ) " { 0 } )  <-> 
( (denom `  q
)  e.  ZZ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 ) ) )
4329, 41, 42mp2b 10 . . . . . . . . 9  |-  ( (denom `  q )  e.  ( `' ( ZRHom ` RRfld ) " { 0 } )  <->  ( (denom `  q )  e.  ZZ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 ) )
44 fvex 6201 . . . . . . . . . 10  |-  (denom `  q )  e.  _V
4544elsn 4192 . . . . . . . . 9  |-  ( (denom `  q )  e.  {
0 }  <->  (denom `  q
)  =  0 )
4640, 43, 453bitr3ri 291 . . . . . . . 8  |-  ( (denom `  q )  =  0  <-> 
( (denom `  q
)  e.  ZZ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 ) )
4736, 46sylibr 224 . . . . . . 7  |-  ( ( q  e.  QQ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 )  ->  (denom `  q
)  =  0 )
4833nnne0d 11065 . . . . . . . . 9  |-  ( q  e.  QQ  ->  (denom `  q )  =/=  0
)
4948adantr 481 . . . . . . . 8  |-  ( ( q  e.  QQ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 )  ->  (denom `  q
)  =/=  0 )
5049neneqd 2799 . . . . . . 7  |-  ( ( q  e.  QQ  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 )  ->  -.  (denom `  q )  =  0 )
5147, 50pm2.65da 600 . . . . . 6  |-  ( q  e.  QQ  ->  -.  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  0 )
5251neqned 2801 . . . . 5  |-  ( q  e.  QQ  ->  (
( ZRHom ` RRfld ) `  (denom `  q ) )  =/=  0 )
53 redvr 19963 . . . . 5  |-  ( ( ( ( ZRHom ` RRfld ) `  (numer `  q
) )  e.  RR  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  e.  RR  /\  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =/=  0
)  ->  ( (
( ZRHom ` RRfld ) `  (numer `  q ) ) (/r ` RRfld ) ( ( ZRHom ` RRfld ) `  (denom `  q ) ) )  =  ( ( ( ZRHom ` RRfld ) `  (numer `  q ) )  / 
( ( ZRHom ` RRfld ) `  (denom `  q
) ) ) )
5432, 35, 52, 53syl3anc 1326 . . . 4  |-  ( q  e.  QQ  ->  (
( ( ZRHom ` RRfld ) `  (numer `  q
) ) (/r ` RRfld ) ( ( ZRHom ` RRfld ) `  (denom `  q ) ) )  =  ( ( ( ZRHom ` RRfld ) `  (numer `  q ) )  /  ( ( ZRHom ` RRfld ) `  (denom `  q ) ) ) )
5510fveq1i 6192 . . . . . . . 8  |-  ( ( ZRHom ` RRfld ) `  (numer `  q ) )  =  ( (  _I  |`  ZZ ) `
 (numer `  q
) )
56 fvresi 6439 . . . . . . . 8  |-  ( (numer `  q )  e.  ZZ  ->  ( (  _I  |`  ZZ ) `
 (numer `  q
) )  =  (numer `  q ) )
5755, 56syl5eq 2668 . . . . . . 7  |-  ( (numer `  q )  e.  ZZ  ->  ( ( ZRHom ` RRfld ) `  (numer `  q
) )  =  (numer `  q ) )
5831, 57syl 17 . . . . . 6  |-  ( q  e.  QQ  ->  (
( ZRHom ` RRfld ) `  (numer `  q ) )  =  (numer `  q
) )
5910fveq1i 6192 . . . . . . . 8  |-  ( ( ZRHom ` RRfld ) `  (denom `  q ) )  =  ( (  _I  |`  ZZ ) `
 (denom `  q
) )
60 fvresi 6439 . . . . . . . 8  |-  ( (denom `  q )  e.  ZZ  ->  ( (  _I  |`  ZZ ) `
 (denom `  q
) )  =  (denom `  q ) )
6159, 60syl5eq 2668 . . . . . . 7  |-  ( (denom `  q )  e.  ZZ  ->  ( ( ZRHom ` RRfld ) `  (denom `  q
) )  =  (denom `  q ) )
6234, 61syl 17 . . . . . 6  |-  ( q  e.  QQ  ->  (
( ZRHom ` RRfld ) `  (denom `  q ) )  =  (denom `  q
) )
6358, 62oveq12d 6668 . . . . 5  |-  ( q  e.  QQ  ->  (
( ( ZRHom ` RRfld ) `  (numer `  q
) )  /  (
( ZRHom ` RRfld ) `  (denom `  q ) ) )  =  ( (numer `  q )  /  (denom `  q ) ) )
64 qeqnumdivden 15454 . . . . 5  |-  ( q  e.  QQ  ->  q  =  ( (numer `  q )  /  (denom `  q ) ) )
6563, 64eqtr4d 2659 . . . 4  |-  ( q  e.  QQ  ->  (
( ( ZRHom ` RRfld ) `  (numer `  q
) )  /  (
( ZRHom ` RRfld ) `  (denom `  q ) ) )  =  q )
6627, 54, 653eqtrd 2660 . . 3  |-  ( q  e.  QQ  ->  (
(QQHom ` RRfld ) `  q
)  =  q )
6766mpteq2ia 4740 . 2  |-  ( q  e.  QQ  |->  ( (QQHom ` RRfld ) `  q ) )  =  ( q  e.  QQ  |->  q )
68 mptresid 5456 . 2  |-  ( q  e.  QQ  |->  q )  =  (  _I  |`  QQ )
6925, 67, 683eqtri 2648 1  |-  (QQHom ` RRfld )  =  (  _I  |`  QQ )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794    C_ wss 3574   {csn 4177    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    / cdiv 10684   ZZcz 11377   QQcq 11788  numercnumer 15441  denomcdenom 15442   Ringcrg 18547  /rcdvr 18682   DivRingcdr 18747  SubRingcsubrg 18776  ℂfldccnfld 19746   ZRHomczrh 19848  chrcchr 19850  RRfldcrefld 19950  QQHomcqqh 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-od 17948  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-chr 19854  df-refld 19951  df-qqh 30017
This theorem is referenced by:  rrhre  30065
  Copyright terms: Public domain W3C validator