| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quoremz | Structured version Visualization version Unicode version | ||
| Description: Quotient and remainder of
an integer divided by a positive integer.
TODO - is this really needed for anything? Should we use |
| Ref | Expression |
|---|---|
| quorem.1 |
|
| quorem.2 |
|
| Ref | Expression |
|---|---|
| quoremz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quorem.1 |
. . 3
| |
| 2 | zre 11381 |
. . . . . 6
| |
| 3 | 2 | adantr 481 |
. . . . 5
|
| 4 | nnre 11027 |
. . . . . 6
| |
| 5 | 4 | adantl 482 |
. . . . 5
|
| 6 | nnne0 11053 |
. . . . . 6
| |
| 7 | 6 | adantl 482 |
. . . . 5
|
| 8 | 3, 5, 7 | redivcld 10853 |
. . . 4
|
| 9 | 8 | flcld 12599 |
. . 3
|
| 10 | 1, 9 | syl5eqel 2705 |
. 2
|
| 11 | quorem.2 |
. . 3
| |
| 12 | 10 | zcnd 11483 |
. . . . . . 7
|
| 13 | nncn 11028 |
. . . . . . . 8
| |
| 14 | 13 | adantl 482 |
. . . . . . 7
|
| 15 | 12, 14, 7 | divcan3d 10806 |
. . . . . 6
|
| 16 | flle 12600 |
. . . . . . . 8
| |
| 17 | 8, 16 | syl 17 |
. . . . . . 7
|
| 18 | 1, 17 | syl5eqbr 4688 |
. . . . . 6
|
| 19 | 15, 18 | eqbrtrd 4675 |
. . . . 5
|
| 20 | nnz 11399 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 482 |
. . . . . . . 8
|
| 22 | 21, 10 | zmulcld 11488 |
. . . . . . 7
|
| 23 | 22 | zred 11482 |
. . . . . 6
|
| 24 | nngt0 11049 |
. . . . . . 7
| |
| 25 | 24 | adantl 482 |
. . . . . 6
|
| 26 | lediv1 10888 |
. . . . . 6
| |
| 27 | 23, 3, 5, 25, 26 | syl112anc 1330 |
. . . . 5
|
| 28 | 19, 27 | mpbird 247 |
. . . 4
|
| 29 | simpl 473 |
. . . . 5
| |
| 30 | znn0sub 11424 |
. . . . 5
| |
| 31 | 22, 29, 30 | syl2anc 693 |
. . . 4
|
| 32 | 28, 31 | mpbid 222 |
. . 3
|
| 33 | 11, 32 | syl5eqel 2705 |
. 2
|
| 34 | 1 | oveq2i 6661 |
. . . . . 6
|
| 35 | fraclt1 12603 |
. . . . . . 7
| |
| 36 | 8, 35 | syl 17 |
. . . . . 6
|
| 37 | 34, 36 | syl5eqbr 4688 |
. . . . 5
|
| 38 | 11 | oveq1i 6660 |
. . . . . 6
|
| 39 | zcn 11382 |
. . . . . . . . 9
| |
| 40 | 39 | adantr 481 |
. . . . . . . 8
|
| 41 | 22 | zcnd 11483 |
. . . . . . . 8
|
| 42 | 13, 6 | jca 554 |
. . . . . . . . 9
|
| 43 | 42 | adantl 482 |
. . . . . . . 8
|
| 44 | divsubdir 10721 |
. . . . . . . 8
| |
| 45 | 40, 41, 43, 44 | syl3anc 1326 |
. . . . . . 7
|
| 46 | 15 | oveq2d 6666 |
. . . . . . 7
|
| 47 | 45, 46 | eqtrd 2656 |
. . . . . 6
|
| 48 | 38, 47 | syl5eq 2668 |
. . . . 5
|
| 49 | 13, 6 | dividd 10799 |
. . . . . 6
|
| 50 | 49 | adantl 482 |
. . . . 5
|
| 51 | 37, 48, 50 | 3brtr4d 4685 |
. . . 4
|
| 52 | 33 | nn0red 11352 |
. . . . 5
|
| 53 | ltdiv1 10887 |
. . . . 5
| |
| 54 | 52, 5, 5, 25, 53 | syl112anc 1330 |
. . . 4
|
| 55 | 51, 54 | mpbird 247 |
. . 3
|
| 56 | 11 | oveq2i 6661 |
. . . 4
|
| 57 | 41, 40 | pncan3d 10395 |
. . . 4
|
| 58 | 56, 57 | syl5req 2669 |
. . 3
|
| 59 | 55, 58 | jca 554 |
. 2
|
| 60 | 10, 33, 59 | jca31 557 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fl 12593 |
| This theorem is referenced by: quoremnn0 12655 |
| Copyright terms: Public domain | W3C validator |