MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxnm Structured version   Visualization version   Unicode version

Theorem rrxnm 23179
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r  |-  H  =  (ℝ^ `  I )
rrxbase.b  |-  B  =  ( Base `  H
)
Assertion
Ref Expression
rrxnm  |-  ( I  e.  V  ->  (
f  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x ) ^ 2 ) ) ) ) )  =  ( norm `  H
) )
Distinct variable groups:    x, f, B    f, I, x    f, V, x
Allowed substitution hints:    H( x, f)

Proof of Theorem rrxnm
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recrng 19967 . . . . 5  |- RRfld  e.  *Ring
2 srngring 18852 . . . . 5  |-  (RRfld  e.  *Ring  -> RRfld 
e.  Ring )
31, 2ax-mp 5 . . . 4  |- RRfld  e.  Ring
4 eqid 2622 . . . . 5  |-  (RRfld freeLMod  I )  =  (RRfld freeLMod  I )
54frlmlmod 20093 . . . 4  |-  ( (RRfld 
e.  Ring  /\  I  e.  V )  ->  (RRfld freeLMod  I )  e.  LMod )
63, 5mpan 706 . . 3  |-  ( I  e.  V  ->  (RRfld freeLMod  I )  e.  LMod )
7 lmodgrp 18870 . . 3  |-  ( (RRfld freeLMod  I )  e.  LMod  ->  (RRfld freeLMod  I )  e.  Grp )
8 eqid 2622 . . . 4  |-  (toCHil `  (RRfld freeLMod  I ) )  =  (toCHil `  (RRfld freeLMod  I ) )
9 eqid 2622 . . . 4  |-  ( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  =  (
norm `  (toCHil `  (RRfld freeLMod  I ) ) )
10 eqid 2622 . . . 4  |-  ( Base `  (RRfld freeLMod  I ) )  =  ( Base `  (RRfld freeLMod  I ) )
11 eqid 2622 . . . 4  |-  ( .i
`  (RRfld freeLMod  I ) )  =  ( .i `  (RRfld freeLMod  I ) )
128, 9, 10, 11tchnmfval 23027 . . 3  |-  ( (RRfld freeLMod  I )  e.  Grp  ->  (
norm `  (toCHil `  (RRfld freeLMod  I ) ) )  =  ( f  e.  (
Base `  (RRfld freeLMod  I ) )  |->  ( sqr `  (
f ( .i `  (RRfld freeLMod  I ) ) f ) ) ) )
136, 7, 123syl 18 . 2  |-  ( I  e.  V  ->  ( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  =  ( f  e.  (
Base `  (RRfld freeLMod  I ) )  |->  ( sqr `  (
f ( .i `  (RRfld freeLMod  I ) ) f ) ) ) )
14 rrxval.r . . . 4  |-  H  =  (ℝ^ `  I )
1514rrxval 23175 . . 3  |-  ( I  e.  V  ->  H  =  (toCHil `  (RRfld freeLMod  I ) ) )
1615fveq2d 6195 . 2  |-  ( I  e.  V  ->  ( norm `  H )  =  ( norm `  (toCHil `  (RRfld freeLMod  I ) ) ) )
1715fveq2d 6195 . . . 4  |-  ( I  e.  V  ->  ( Base `  H )  =  ( Base `  (toCHil `  (RRfld freeLMod  I ) ) ) )
18 rrxbase.b . . . 4  |-  B  =  ( Base `  H
)
198, 10tchbas 23018 . . . 4  |-  ( Base `  (RRfld freeLMod  I ) )  =  ( Base `  (toCHil `  (RRfld freeLMod  I ) ) )
2017, 18, 193eqtr4g 2681 . . 3  |-  ( I  e.  V  ->  B  =  ( Base `  (RRfld freeLMod  I ) ) )
2114, 18rrxbase 23176 . . . . . . . 8  |-  ( I  e.  V  ->  B  =  { f  e.  ( RR  ^m  I )  |  f finSupp  0 } )
22 ssrab2 3687 . . . . . . . 8  |-  { f  e.  ( RR  ^m  I )  |  f finSupp 
0 }  C_  ( RR  ^m  I )
2321, 22syl6eqss 3655 . . . . . . 7  |-  ( I  e.  V  ->  B  C_  ( RR  ^m  I
) )
2423sselda 3603 . . . . . 6  |-  ( ( I  e.  V  /\  f  e.  B )  ->  f  e.  ( RR 
^m  I ) )
2515fveq2d 6195 . . . . . . . . 9  |-  ( I  e.  V  ->  ( .i `  H )  =  ( .i `  (toCHil `  (RRfld freeLMod  I ) ) ) )
2614, 18rrxip 23178 . . . . . . . . 9  |-  ( I  e.  V  ->  (
h  e.  ( RR 
^m  I ) ,  g  e.  ( RR 
^m  I )  |->  (RRfld  gsumg  ( x  e.  I  |->  ( ( h `  x
)  x.  ( g `
 x ) ) ) ) )  =  ( .i `  H
) )
278, 11tchip 23024 . . . . . . . . . 10  |-  ( .i
`  (RRfld freeLMod  I ) )  =  ( .i `  (toCHil `  (RRfld freeLMod  I ) ) )
2827a1i 11 . . . . . . . . 9  |-  ( I  e.  V  ->  ( .i `  (RRfld freeLMod  I ) )  =  ( .i `  (toCHil `  (RRfld freeLMod  I ) ) ) )
2925, 26, 283eqtr4rd 2667 . . . . . . . 8  |-  ( I  e.  V  ->  ( .i `  (RRfld freeLMod  I ) )  =  ( h  e.  ( RR  ^m  I
) ,  g  e.  ( RR  ^m  I
)  |->  (RRfld  gsumg  ( x  e.  I  |->  ( ( h `  x )  x.  (
g `  x )
) ) ) ) )
3029adantr 481 . . . . . . 7  |-  ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  -> 
( .i `  (RRfld freeLMod  I ) )  =  ( h  e.  ( RR 
^m  I ) ,  g  e.  ( RR 
^m  I )  |->  (RRfld  gsumg  ( x  e.  I  |->  ( ( h `  x
)  x.  ( g `
 x ) ) ) ) ) )
31 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  ->  h  =  f )
3231fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  -> 
( h `  x
)  =  ( f `
 x ) )
33 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  -> 
g  =  f )
3433fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  -> 
( g `  x
)  =  ( f `
 x ) )
3532, 34oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  -> 
( ( h `  x )  x.  (
g `  x )
)  =  ( ( f `  x )  x.  ( f `  x ) ) )
3635adantr 481 . . . . . . . . . 10  |-  ( ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I
) )  /\  (
h  =  f  /\  g  =  f )
)  /\  x  e.  I )  ->  (
( h `  x
)  x.  ( g `
 x ) )  =  ( ( f `
 x )  x.  ( f `  x
) ) )
37 elmapi 7879 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( RR  ^m  I )  ->  f : I --> RR )
3837adantl 482 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  -> 
f : I --> RR )
3938ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  x  e.  I
)  ->  ( f `  x )  e.  RR )
4039recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  x  e.  I
)  ->  ( f `  x )  e.  CC )
4140adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I
) )  /\  (
h  =  f  /\  g  =  f )
)  /\  x  e.  I )  ->  (
f `  x )  e.  CC )
4241sqvald 13005 . . . . . . . . . 10  |-  ( ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I
) )  /\  (
h  =  f  /\  g  =  f )
)  /\  x  e.  I )  ->  (
( f `  x
) ^ 2 )  =  ( ( f `
 x )  x.  ( f `  x
) ) )
4336, 42eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I
) )  /\  (
h  =  f  /\  g  =  f )
)  /\  x  e.  I )  ->  (
( h `  x
)  x.  ( g `
 x ) )  =  ( ( f `
 x ) ^
2 ) )
4443mpteq2dva 4744 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  -> 
( x  e.  I  |->  ( ( h `  x )  x.  (
g `  x )
) )  =  ( x  e.  I  |->  ( ( f `  x
) ^ 2 ) ) )
4544oveq2d 6666 . . . . . . 7  |-  ( ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  /\  ( h  =  f  /\  g  =  f ) )  -> 
(RRfld  gsumg  ( x  e.  I  |->  ( ( h `  x )  x.  (
g `  x )
) ) )  =  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x ) ^ 2 ) ) ) )
46 simpr 477 . . . . . . 7  |-  ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  -> 
f  e.  ( RR 
^m  I ) )
47 ovexd 6680 . . . . . . 7  |-  ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  -> 
(RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x ) ^ 2 ) ) )  e. 
_V )
4830, 45, 46, 46, 47ovmpt2d 6788 . . . . . 6  |-  ( ( I  e.  V  /\  f  e.  ( RR  ^m  I ) )  -> 
( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x
) ^ 2 ) ) ) )
4924, 48syldan 487 . . . . 5  |-  ( ( I  e.  V  /\  f  e.  B )  ->  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x
) ^ 2 ) ) ) )
5049eqcomd 2628 . . . 4  |-  ( ( I  e.  V  /\  f  e.  B )  ->  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x ) ^ 2 ) ) )  =  ( f ( .i
`  (RRfld freeLMod  I ) ) f ) )
5150fveq2d 6195 . . 3  |-  ( ( I  e.  V  /\  f  e.  B )  ->  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( f `  x
) ^ 2 ) ) ) )  =  ( sqr `  (
f ( .i `  (RRfld freeLMod  I ) ) f ) ) )
5220, 51mpteq12dva 4732 . 2  |-  ( I  e.  V  ->  (
f  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x ) ^ 2 ) ) ) ) )  =  ( f  e.  (
Base `  (RRfld freeLMod  I ) )  |->  ( sqr `  (
f ( .i `  (RRfld freeLMod  I ) ) f ) ) ) )
5313, 16, 523eqtr4rd 2667 1  |-  ( I  e.  V  ->  (
f  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( f `  x ) ^ 2 ) ) ) ) )  =  ( norm `  H
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   finSupp cfsupp 8275   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941   2c2 11070   ^cexp 12860   sqrcsqrt 13973   Basecbs 15857   .icip 15946    gsumg cgsu 16101   Grpcgrp 17422   Ringcrg 18547   *Ringcsr 18844   LModclmod 18863  RRfldcrefld 19950   freeLMod cfrlm 20090   normcnm 22381  toCHilctch 22967  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrxds  23181
  Copyright terms: Public domain W3C validator