MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadasslem Structured version   Visualization version   Unicode version

Theorem sadasslem 15192
Description: Lemma for sadass 15193. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadasslem.1  |-  ( ph  ->  A  C_  NN0 )
sadasslem.2  |-  ( ph  ->  B  C_  NN0 )
sadasslem.3  |-  ( ph  ->  C  C_  NN0 )
sadasslem.4  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
sadasslem  |-  ( ph  ->  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) )  =  ( ( A sadd  ( B sadd 
C ) )  i^i  ( 0..^ N ) ) )

Proof of Theorem sadasslem
Dummy variables  c  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . . . . . . . 11  |-  ( A  i^i  ( 0..^ N ) )  C_  A
2 sadasslem.1 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  NN0 )
31, 2syl5ss 3614 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  (
0..^ N ) ) 
C_  NN0 )
4 fzofi 12773 . . . . . . . . . . . 12  |-  ( 0..^ N )  e.  Fin
54a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
6 inss2 3834 . . . . . . . . . . 11  |-  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N )
7 ssfi 8180 . . . . . . . . . . 11  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( A  i^i  ( 0..^ N ) )  e.  Fin )
85, 6, 7sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  Fin )
9 elfpw 8268 . . . . . . . . . 10  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( A  i^i  ( 0..^ N ) )  C_  NN0  /\  ( A  i^i  (
0..^ N ) )  e.  Fin ) )
103, 8, 9sylanbrc 698 . . . . . . . . 9  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
11 bitsf1o 15167 . . . . . . . . . . 11  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
12 f1ocnv 6149 . . . . . . . . . . 11  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
13 f1of 6137 . . . . . . . . . . 11  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
1411, 12, 13mp2b 10 . . . . . . . . . 10  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
1514ffvelrni 6358 . . . . . . . . 9  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  e.  NN0 )
1610, 15syl 17 . . . . . . . 8  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  e.  NN0 )
1716nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  e.  CC )
18 inss1 3833 . . . . . . . . . . 11  |-  ( B  i^i  ( 0..^ N ) )  C_  B
19 sadasslem.2 . . . . . . . . . . 11  |-  ( ph  ->  B  C_  NN0 )
2018, 19syl5ss 3614 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
21 inss2 3834 . . . . . . . . . . 11  |-  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N )
22 ssfi 8180 . . . . . . . . . . 11  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) )  e.  Fin )
235, 21, 22sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  Fin )
24 elfpw 8268 . . . . . . . . . 10  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( B  i^i  ( 0..^ N ) )  C_  NN0  /\  ( B  i^i  (
0..^ N ) )  e.  Fin ) )
2520, 23, 24sylanbrc 698 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
2614ffvelrni 6358 . . . . . . . . 9  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  e.  NN0 )
2725, 26syl 17 . . . . . . . 8  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  e.  NN0 )
2827nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  e.  CC )
29 inss1 3833 . . . . . . . . . . 11  |-  ( C  i^i  ( 0..^ N ) )  C_  C
30 sadasslem.3 . . . . . . . . . . 11  |-  ( ph  ->  C  C_  NN0 )
3129, 30syl5ss 3614 . . . . . . . . . 10  |-  ( ph  ->  ( C  i^i  (
0..^ N ) ) 
C_  NN0 )
32 inss2 3834 . . . . . . . . . . 11  |-  ( C  i^i  ( 0..^ N ) )  C_  (
0..^ N )
33 ssfi 8180 . . . . . . . . . . 11  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( C  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( C  i^i  ( 0..^ N ) )  e.  Fin )
345, 32, 33sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( C  i^i  (
0..^ N ) )  e.  Fin )
35 elfpw 8268 . . . . . . . . . 10  |-  ( ( C  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( C  i^i  ( 0..^ N ) )  C_  NN0  /\  ( C  i^i  (
0..^ N ) )  e.  Fin ) )
3631, 34, 35sylanbrc 698 . . . . . . . . 9  |-  ( ph  ->  ( C  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
3714ffvelrni 6358 . . . . . . . . 9  |-  ( ( C  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) )  e.  NN0 )
3836, 37syl 17 . . . . . . . 8  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) )  e.  NN0 )
3938nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) )  e.  CC )
4017, 28, 39addassd 10062 . . . . . 6  |-  ( ph  ->  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) )  =  ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) ) ) )
4140oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) ) )  mod  ( 2 ^ N
) ) )
42 inss1 3833 . . . . . . . . . 10  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
43 sadcl 15184 . . . . . . . . . . 11  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A sadd  B )  C_  NN0 )
442, 19, 43syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
4542, 44syl5ss 3614 . . . . . . . . 9  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
46 inss2 3834 . . . . . . . . . 10  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
47 ssfi 8180 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
485, 46, 47sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
49 elfpw 8268 . . . . . . . . 9  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
5045, 48, 49sylanbrc 698 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
5114ffvelrni 6358 . . . . . . . 8  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
5250, 51syl 17 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
5352nn0red 11352 . . . . . 6  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  RR )
5416nn0red 11352 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  e.  RR )
5527nn0red 11352 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  e.  RR )
5654, 55readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  ( A  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  e.  RR )
5738nn0red 11352 . . . . . 6  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) )  e.  RR )
58 2rp 11837 . . . . . . . 8  |-  2  e.  RR+
5958a1i 11 . . . . . . 7  |-  ( ph  ->  2  e.  RR+ )
60 sadasslem.4 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
6160nn0zd 11480 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
6259, 61rpexpcld 13032 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
63 eqid 2622 . . . . . . 7  |-  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
64 eqid 2622 . . . . . . 7  |-  `' (bits  |`  NN0 )  =  `' (bits  |`  NN0 )
652, 19, 63, 60, 64sadadd3 15183 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
66 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  ( C  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N
) )  =  ( ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) ) )
6753, 56, 57, 57, 62, 65, 66modadd12d 12726 . . . . 5  |-  ( ph  ->  ( ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
68 inss1 3833 . . . . . . . . . 10  |-  ( ( B sadd  C )  i^i  ( 0..^ N ) )  C_  ( B sadd  C )
69 sadcl 15184 . . . . . . . . . . 11  |-  ( ( B  C_  NN0  /\  C  C_ 
NN0 )  ->  ( B sadd  C )  C_  NN0 )
7019, 30, 69syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( B sadd  C ) 
C_  NN0 )
7168, 70syl5ss 3614 . . . . . . . . 9  |-  ( ph  ->  ( ( B sadd  C
)  i^i  ( 0..^ N ) )  C_  NN0 )
72 inss2 3834 . . . . . . . . . 10  |-  ( ( B sadd  C )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
73 ssfi 8180 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( B sadd  C )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( B sadd  C
)  i^i  ( 0..^ N ) )  e. 
Fin )
745, 72, 73sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( ( B sadd  C
)  i^i  ( 0..^ N ) )  e. 
Fin )
75 elfpw 8268 . . . . . . . . 9  |-  ( ( ( B sadd  C )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( B sadd 
C )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( B sadd  C )  i^i  ( 0..^ N ) )  e.  Fin )
)
7671, 74, 75sylanbrc 698 . . . . . . . 8  |-  ( ph  ->  ( ( B sadd  C
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
7714ffvelrni 6358 . . . . . . . 8  |-  ( ( ( B sadd  C )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  (
( B sadd  C )  i^i  ( 0..^ N ) ) )  e.  NN0 )
7876, 77syl 17 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( B sadd  C
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
7978nn0red 11352 . . . . . 6  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( B sadd  C
)  i^i  ( 0..^ N ) ) )  e.  RR )
8055, 57readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  ( B  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) )  e.  RR )
81 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  ( A  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N
) )  =  ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) ) )
82 eqid 2622 . . . . . . 7  |-  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  B ,  m  e.  C ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  B ,  m  e.  C ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
8319, 30, 82, 60, 64sadadd3 15183 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( B sadd  C )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
8454, 54, 79, 80, 62, 81, 83modadd12d 12726 . . . . 5  |-  ( ph  ->  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( ( B sadd  C
)  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  (
0..^ N ) ) ) ) )  mod  ( 2 ^ N
) ) )
8541, 67, 843eqtr4d 2666 . . . 4  |-  ( ph  ->  ( ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( ( B sadd  C
)  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) ) )
86 eqid 2622 . . . . 5  |-  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  ( A sadd 
B ) ,  m  e.  C ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  ( A sadd 
B ) ,  m  e.  C ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
8744, 30, 86, 60, 64sadadd3 15183 . . . 4  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( C  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) ) )
88 eqid 2622 . . . . 5  |-  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  ( B sadd  C ) ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  ( B sadd  C ) ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
892, 70, 88, 60, 64sadadd3 15183 . . . 4  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( ( B sadd  C
)  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) ) )
9085, 87, 893eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) ) )
91 inss1 3833 . . . . . . . 8  |-  ( ( ( A sadd  B ) sadd 
C )  i^i  (
0..^ N ) ) 
C_  ( ( A sadd 
B ) sadd  C )
92 sadcl 15184 . . . . . . . . 9  |-  ( ( ( A sadd  B ) 
C_  NN0  /\  C  C_  NN0 )  ->  ( ( A sadd  B ) sadd  C ) 
C_  NN0 )
9344, 30, 92syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
) sadd  C )  C_  NN0 )
9491, 93syl5ss 3614 . . . . . . 7  |-  ( ph  ->  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) )  C_  NN0 )
95 inss2 3834 . . . . . . . 8  |-  ( ( ( A sadd  B ) sadd 
C )  i^i  (
0..^ N ) ) 
C_  ( 0..^ N )
96 ssfi 8180 . . . . . . . 8  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) 
C_  ( 0..^ N ) )  ->  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) )  e.  Fin )
975, 95, 96sylancl 694 . . . . . . 7  |-  ( ph  ->  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) )  e.  Fin )
98 elfpw 8268 . . . . . . 7  |-  ( ( ( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin )  <->  ( (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) )  e.  Fin ) )
9994, 97, 98sylanbrc 698 . . . . . 6  |-  ( ph  ->  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
10014ffvelrni 6358 . . . . . 6  |-  ( ( ( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin )  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e. 
NN0 )
10199, 100syl 17 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e. 
NN0 )
102101nn0red 11352 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e.  RR )
103101nn0ge0d 11354 . . . 4  |-  ( ph  ->  0  <_  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) )
104 fvres 6207 . . . . . . . . 9  |-  ( ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e. 
NN0  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) ) )
105101, 104syl 17 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) ) )
106 f1ocnvfv2 6533 . . . . . . . . 9  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( ( ( A sadd  B ) sadd  C
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )  ->  (
(bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) )  =  ( ( ( A sadd  B ) sadd  C
)  i^i  ( 0..^ N ) ) )
10711, 99, 106sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) )  =  ( ( ( A sadd  B ) sadd  C
)  i^i  ( 0..^ N ) ) )
108105, 107eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) )  =  ( ( ( A sadd  B ) sadd  C
)  i^i  ( 0..^ N ) ) )
109108, 95syl6eqss 3655 . . . . . 6  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) ) 
C_  ( 0..^ N ) )
110101nn0zd 11480 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e.  ZZ )
111 bitsfzo 15157 . . . . . . 7  |-  ( ( ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e.  ZZ  /\  N  e. 
NN0 )  ->  (
( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  <-> 
(bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) ) 
C_  ( 0..^ N ) ) )
112110, 60, 111syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N
) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) ) ) 
C_  ( 0..^ N ) ) )
113109, 112mpbird 247 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) ) )
114 elfzolt2 12479 . . . . 5  |-  ( ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  ->  ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  <  ( 2 ^ N ) )
115113, 114syl 17 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  < 
( 2 ^ N
) )
116 modid 12695 . . . 4  |-  ( ( ( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  /\  ( 0  <_  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  /\  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  < 
( 2 ^ N
) ) )  -> 
( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) ) )
117102, 62, 103, 115, 116syl22anc 1327 . . 3  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) ) )
118 inss1 3833 . . . . . . . 8  |-  ( ( A sadd  ( B sadd  C
) )  i^i  (
0..^ N ) ) 
C_  ( A sadd  ( B sadd  C ) )
119 sadcl 15184 . . . . . . . . 9  |-  ( ( A  C_  NN0  /\  ( B sadd  C )  C_  NN0 )  ->  ( A sadd  ( B sadd 
C ) )  C_  NN0 )
1202, 70, 119syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( A sadd  ( B sadd 
C ) )  C_  NN0 )
121118, 120syl5ss 3614 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) )  C_  NN0 )
122 inss2 3834 . . . . . . . 8  |-  ( ( A sadd  ( B sadd  C
) )  i^i  (
0..^ N ) ) 
C_  ( 0..^ N )
123 ssfi 8180 . . . . . . . 8  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) 
C_  ( 0..^ N ) )  ->  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) )  e.  Fin )
1245, 122, 123sylancl 694 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) )  e.  Fin )
125 elfpw 8268 . . . . . . 7  |-  ( ( ( A sadd  ( B sadd 
C ) )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )  <->  ( ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) )  C_  NN0  /\  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) )  e.  Fin ) )
126121, 124, 125sylanbrc 698 . . . . . 6  |-  ( ph  ->  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )
)
12714ffvelrni 6358 . . . . . 6  |-  ( ( ( A sadd  ( B sadd 
C ) )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  NN0 )
128126, 127syl 17 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  NN0 )
129128nn0red 11352 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  RR )
130 2nn 11185 . . . . . . 7  |-  2  e.  NN
131130a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  NN )
132131, 60nnexpcld 13030 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
133132nnrpd 11870 . . . 4  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
134128nn0ge0d 11354 . . . 4  |-  ( ph  ->  0  <_  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )
135 fvres 6207 . . . . . . . . 9  |-  ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  NN0  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) ) )
136128, 135syl 17 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) ) )
137 f1ocnvfv2 6533 . . . . . . . . 9  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )  ->  (
(bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )
13811, 126, 137sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )
139136, 138eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )
140139, 122syl6eqss 3655 . . . . . 6  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) )
141128nn0zd 11480 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  ZZ )
142 bitsfzo 15157 . . . . . . 7  |-  ( ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  ZZ  /\  N  e.  NN0 )  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N
) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) ) )
143141, 60, 142syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N
) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) ) )
144140, 143mpbird 247 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) ) )
145 elfzolt2 12479 . . . . 5  |-  ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  -> 
( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) )
146144, 145syl 17 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) )
147 modid 12695 . . . 4  |-  ( ( ( ( `' (bits  |`  NN0 ) `  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) )  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  /\  ( 0  <_  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  /\  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) ) )  ->  (
( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )
148129, 133, 134, 146, 147syl22anc 1327 . . 3  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  (
( A sadd  ( B sadd  C ) )  i^i  (
0..^ N ) ) ) )
14990, 117, 1483eqtr3d 2664 . 2  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )
150 f1of1 6136 . . . . 5  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-> NN0 )
15111, 12, 150mp2b 10 . . . 4  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-> NN0
152 f1fveq 6519 . . . 4  |-  ( ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-> NN0  /\  ( ( ( ( A sadd  B ) sadd  C
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  /\  ( ( A sadd  ( B sadd  C
) )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) ) )  ->  ( ( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  <->  ( (
( A sadd  B ) sadd  C )  i^i  ( 0..^ N ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )
153151, 152mpan 706 . . 3  |-  ( ( ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  /\  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )  ->  (
( `' (bits  |`  NN0 ) `  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  <->  ( (
( A sadd  B ) sadd  C )  i^i  ( 0..^ N ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )
15499, 126, 153syl2anc 693 . 2  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) )  <->  ( (
( A sadd  B ) sadd  C )  i^i  ( 0..^ N ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ N ) ) ) )
155149, 154mpbid 222 1  |-  ( ph  ->  ( ( ( A sadd 
B ) sadd  C )  i^i  ( 0..^ N ) )  =  ( ( A sadd  ( B sadd 
C ) )  i^i  ( 0..^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483  caddwcad 1545    e. wcel 1990    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832  ..^cfzo 12465    mod cmo 12668    seqcseq 12801   ^cexp 12860  bitscbits 15141   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  sadass  15193
  Copyright terms: Public domain W3C validator