Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem1 Structured version   Visualization version   Unicode version

Theorem smfpimbor1lem1 41005
Description: Every open set belongs to  T. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem1.s  |-  ( ph  ->  S  e. SAlg )
smfpimbor1lem1.f  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
smfpimbor1lem1.a  |-  D  =  dom  F
smfpimbor1lem1.j  |-  J  =  ( topGen `  ran  (,) )
smfpimbor1lem1.8  |-  ( ph  ->  G  e.  J )
smfpimbor1lem1.t  |-  T  =  { e  e.  ~P RR  |  ( `' F " e )  e.  ( St  D ) }
Assertion
Ref Expression
smfpimbor1lem1  |-  ( ph  ->  G  e.  T )
Distinct variable groups:    D, e    e, F    S, e    ph, e
Allowed substitution hints:    T( e)    G( e)    J( e)

Proof of Theorem smfpimbor1lem1
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem1.j . . 3  |-  J  =  ( topGen `  ran  (,) )
2 smfpimbor1lem1.8 . . 3  |-  ( ph  ->  G  e.  J )
31, 2tgqioo2 39774 . 2  |-  ( ph  ->  E. q ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  /\  G  =  U. q ) )
4 simprr 796 . . . . 5  |-  ( (
ph  /\  ( q  C_  ( (,) " ( QQ  X.  QQ ) )  /\  G  =  U. q ) )  ->  G  =  U. q
)
5 smfpimbor1lem1.s . . . . . . . . 9  |-  ( ph  ->  S  e. SAlg )
6 smfpimbor1lem1.f . . . . . . . . 9  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
7 smfpimbor1lem1.a . . . . . . . . 9  |-  D  =  dom  F
8 smfpimbor1lem1.t . . . . . . . . 9  |-  T  =  { e  e.  ~P RR  |  ( `' F " e )  e.  ( St  D ) }
95, 6, 7, 8smfresal 40995 . . . . . . . 8  |-  ( ph  ->  T  e. SAlg )
109adantr 481 . . . . . . 7  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  T  e. SAlg )
11 iooex 12198 . . . . . . . . . . . 12  |-  (,)  e.  _V
1211imaexi 39415 . . . . . . . . . . 11  |-  ( (,) " ( QQ  X.  QQ ) )  e.  _V
1312a1i 11 . . . . . . . . . 10  |-  ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  ->  ( (,) " ( QQ  X.  QQ ) )  e.  _V )
14 id 22 . . . . . . . . . 10  |-  ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  ->  q  C_  ( (,) " ( QQ  X.  QQ ) ) )
1513, 14ssexd 4805 . . . . . . . . 9  |-  ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  ->  q  e.  _V )
1615adantl 482 . . . . . . . 8  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  q  e.  _V )
17 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )
18 ioofun 39778 . . . . . . . . . . . . . . 15  |-  Fun  (,)
1918a1i 11 . . . . . . . . . . . . . 14  |-  ( q  e.  ( (,) " ( QQ  X.  QQ ) )  ->  Fun  (,) )
20 id 22 . . . . . . . . . . . . . 14  |-  ( q  e.  ( (,) " ( QQ  X.  QQ ) )  ->  q  e.  ( (,) " ( QQ 
X.  QQ ) ) )
21 fvelima 6248 . . . . . . . . . . . . . 14  |-  ( ( Fun  (,)  /\  q  e.  ( (,) " ( QQ  X.  QQ ) ) )  ->  E. p  e.  ( QQ  X.  QQ ) ( (,) `  p
)  =  q )
2219, 20, 21syl2anc 693 . . . . . . . . . . . . 13  |-  ( q  e.  ( (,) " ( QQ  X.  QQ ) )  ->  E. p  e.  ( QQ  X.  QQ ) ( (,) `  p
)  =  q )
2322adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  ( (,) " ( QQ 
X.  QQ ) ) )  ->  E. p  e.  ( QQ  X.  QQ ) ( (,) `  p
)  =  q )
24 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (,) `  p )  =  q  ->  ( (,) `  p )  =  q )
2524eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (,) `  p )  =  q  ->  q  =  ( (,) `  p
) )
2625adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  ( QQ 
X.  QQ )  /\  ( (,) `  p )  =  q )  -> 
q  =  ( (,) `  p ) )
27 1st2nd2 7205 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ( QQ  X.  QQ )  ->  p  = 
<. ( 1st `  p
) ,  ( 2nd `  p ) >. )
2827fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( (,) `  p )  =  ( (,) `  <. ( 1st `  p ) ,  ( 2nd `  p
) >. ) )
29 df-ov 6653 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  p ) (,) ( 2nd `  p
) )  =  ( (,) `  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
3029eqcomi 2631 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (,) `  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )  =  ( ( 1st `  p ) (,) ( 2nd `  p ) )
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( (,) `  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )  =  ( ( 1st `  p ) (,) ( 2nd `  p ) ) )
3228, 31eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( (,) `  p )  =  ( ( 1st `  p
) (,) ( 2nd `  p ) ) )
3332adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  ( QQ 
X.  QQ )  /\  ( (,) `  p )  =  q )  -> 
( (,) `  p
)  =  ( ( 1st `  p ) (,) ( 2nd `  p
) ) )
3426, 33eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  ( QQ 
X.  QQ )  /\  ( (,) `  p )  =  q )  -> 
q  =  ( ( 1st `  p ) (,) ( 2nd `  p
) ) )
35343adant1 1079 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ )  /\  ( (,) `  p
)  =  q )  ->  q  =  ( ( 1st `  p
) (,) ( 2nd `  p ) ) )
36 ioossre 12235 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  p ) (,) ( 2nd `  p
) )  C_  RR
37 ovex 6678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  p ) (,) ( 2nd `  p
) )  e.  _V
3837elpw 4164 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  p
) (,) ( 2nd `  p ) )  e. 
~P RR  <->  ( ( 1st `  p ) (,) ( 2nd `  p
) )  C_  RR )
3936, 38mpbir 221 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  p ) (,) ( 2nd `  p
) )  e.  ~P RR
4039a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  (
( 1st `  p
) (,) ( 2nd `  p ) )  e. 
~P RR )
415adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  S  e. SAlg )
426adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  F  e.  (SMblFn `  S )
)
43 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( 1st `  p )  e.  QQ )
4443qred 39606 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( 1st `  p )  e.  RR )
4544rexrd 10089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( 1st `  p )  e.  RR* )
4645adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  ( 1st `  p )  e. 
RR* )
47 xp2nd 7199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( 2nd `  p )  e.  QQ )
4847qred 39606 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( 2nd `  p )  e.  RR )
4948rexrd 10089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ( QQ  X.  QQ )  ->  ( 2nd `  p )  e.  RR* )
5049adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  ( 2nd `  p )  e. 
RR* )
5141, 42, 7, 46, 50smfpimioo 40994 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  ( `' F " ( ( 1st `  p ) (,) ( 2nd `  p
) ) )  e.  ( St  D ) )
5240, 51jca 554 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  (
( ( 1st `  p
) (,) ( 2nd `  p ) )  e. 
~P RR  /\  ( `' F " ( ( 1st `  p ) (,) ( 2nd `  p
) ) )  e.  ( St  D ) ) )
53 imaeq2 5462 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  ( ( 1st `  p ) (,) ( 2nd `  p ) )  ->  ( `' F " e )  =  ( `' F " ( ( 1st `  p ) (,) ( 2nd `  p
) ) ) )
5453eleq1d 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  ( ( 1st `  p ) (,) ( 2nd `  p ) )  ->  ( ( `' F " e )  e.  ( St  D )  <-> 
( `' F "
( ( 1st `  p
) (,) ( 2nd `  p ) ) )  e.  ( St  D ) ) )
5554, 8elrab2 3366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  p
) (,) ( 2nd `  p ) )  e.  T  <->  ( ( ( 1st `  p ) (,) ( 2nd `  p
) )  e.  ~P RR  /\  ( `' F " ( ( 1st `  p
) (,) ( 2nd `  p ) ) )  e.  ( St  D ) ) )
5652, 55sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ ) )  ->  (
( 1st `  p
) (,) ( 2nd `  p ) )  e.  T )
57563adant3 1081 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ )  /\  ( (,) `  p
)  =  q )  ->  ( ( 1st `  p ) (,) ( 2nd `  p ) )  e.  T )
5835, 57eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  ( QQ  X.  QQ )  /\  ( (,) `  p
)  =  q )  ->  q  e.  T
)
59583exp 1264 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( p  e.  ( QQ  X.  QQ )  ->  ( ( (,) `  p )  =  q  ->  q  e.  T
) ) )
6059rexlimdv 3030 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. p  e.  ( QQ  X.  QQ ) ( (,) `  p
)  =  q  -> 
q  e.  T ) )
6160adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  ( (,) " ( QQ 
X.  QQ ) ) )  ->  ( E. p  e.  ( QQ  X.  QQ ) ( (,) `  p )  =  q  ->  q  e.  T
) )
6223, 61mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  ( (,) " ( QQ 
X.  QQ ) ) )  ->  q  e.  T )
6362ssd 39252 . . . . . . . . . 10  |-  ( ph  ->  ( (,) " ( QQ  X.  QQ ) ) 
C_  T )
6463adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  ( (,) " ( QQ  X.  QQ ) )  C_  T
)
6517, 64sstrd 3613 . . . . . . . 8  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  q  C_  T )
6616, 65elpwd 4167 . . . . . . 7  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  q  e.  ~P T )
67 ssdomg 8001 . . . . . . . . . 10  |-  ( ( (,) " ( QQ 
X.  QQ ) )  e.  _V  ->  (
q  C_  ( (,) " ( QQ  X.  QQ ) )  ->  q  ~<_  ( (,) " ( QQ 
X.  QQ ) ) ) )
6812, 67ax-mp 5 . . . . . . . . 9  |-  ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  ->  q  ~<_  ( (,) " ( QQ  X.  QQ ) ) )
69 qct 39578 . . . . . . . . . . . . 13  |-  QQ  ~<_  om
7069, 69pm3.2i 471 . . . . . . . . . . . 12  |-  ( QQ  ~<_  om  /\  QQ  ~<_  om )
71 xpct 8839 . . . . . . . . . . . 12  |-  ( ( QQ  ~<_  om  /\  QQ  ~<_  om )  ->  ( QQ  X.  QQ )  ~<_  om )
7270, 71ax-mp 5 . . . . . . . . . . 11  |-  ( QQ 
X.  QQ )  ~<_  om
73 fimact 9357 . . . . . . . . . . 11  |-  ( ( ( QQ  X.  QQ )  ~<_  om  /\  Fun  (,) )  ->  ( (,) " ( QQ  X.  QQ ) )  ~<_  om )
7472, 18, 73mp2an 708 . . . . . . . . . 10  |-  ( (,) " ( QQ  X.  QQ ) )  ~<_  om
7574a1i 11 . . . . . . . . 9  |-  ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  ->  ( (,) " ( QQ  X.  QQ ) )  ~<_  om )
76 domtr 8009 . . . . . . . . 9  |-  ( ( q  ~<_  ( (,) " ( QQ  X.  QQ ) )  /\  ( (,) " ( QQ  X.  QQ ) )  ~<_  om )  ->  q  ~<_  om )
7768, 75, 76syl2anc 693 . . . . . . . 8  |-  ( q 
C_  ( (,) " ( QQ  X.  QQ ) )  ->  q  ~<_  om )
7877adantl 482 . . . . . . 7  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  q  ~<_  om )
7910, 66, 78salunicl 40536 . . . . . 6  |-  ( (
ph  /\  q  C_  ( (,) " ( QQ 
X.  QQ ) ) )  ->  U. q  e.  T )
8079adantrr 753 . . . . 5  |-  ( (
ph  /\  ( q  C_  ( (,) " ( QQ  X.  QQ ) )  /\  G  =  U. q ) )  ->  U. q  e.  T
)
814, 80eqeltrd 2701 . . . 4  |-  ( (
ph  /\  ( q  C_  ( (,) " ( QQ  X.  QQ ) )  /\  G  =  U. q ) )  ->  G  e.  T )
8281ex 450 . . 3  |-  ( ph  ->  ( ( q  C_  ( (,) " ( QQ 
X.  QQ ) )  /\  G  =  U. q )  ->  G  e.  T ) )
8382exlimdv 1861 . 2  |-  ( ph  ->  ( E. q ( q  C_  ( (,) " ( QQ  X.  QQ ) )  /\  G  =  U. q )  ->  G  e.  T )
)
843, 83mpd 15 1  |-  ( ph  ->  G  e.  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   omcom 7065   1stc1st 7166   2ndc2nd 7167    ~<_ cdom 7953   RRcr 9935   RR*cxr 10073   QQcq 11788   (,)cioo 12175   ↾t crest 16081   topGenctg 16098  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-topgen 16104  df-bases 20750  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  smfpimbor1lem2  41006
  Copyright terms: Public domain W3C validator