Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stowei Structured version   Visualization version   Unicode version

Theorem stowei 40281
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a, b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 40280: often times it will be better to use stoweid 40280 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stowei.1  |-  K  =  ( topGen `  ran  (,) )
stowei.2  |-  J  e. 
Comp
stowei.3  |-  T  = 
U. J
stowei.4  |-  C  =  ( J  Cn  K
)
stowei.5  |-  A  C_  C
stowei.6  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
stowei.7  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
stowei.8  |-  ( x  e.  RR  ->  (
t  e.  T  |->  x )  e.  A )
stowei.9  |-  ( ( r  e.  T  /\  t  e.  T  /\  r  =/=  t )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
stowei.10  |-  F  e.  C
stowei.11  |-  E  e.  RR+
Assertion
Ref Expression
stowei  |-  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  E
Distinct variable groups:    f, g,
t, A    f, h, r, x, t, A    f, E, g, t    f, F, g, t    f, J, r, t    T, f, g, t    h, E, r, x    h, F, r, x    T, h, r, x    t, K
Allowed substitution hints:    C( x, t, f, g, h, r)    J( x, g, h)    K( x, f, g, h, r)

Proof of Theorem stowei
StepHypRef Expression
1 nfcv 2764 . . 3  |-  F/_ t F
2 nftru 1730 . . 3  |-  F/ t T.
3 stowei.1 . . 3  |-  K  =  ( topGen `  ran  (,) )
4 stowei.2 . . . 4  |-  J  e. 
Comp
54a1i 11 . . 3  |-  ( T. 
->  J  e.  Comp )
6 stowei.3 . . 3  |-  T  = 
U. J
7 stowei.4 . . 3  |-  C  =  ( J  Cn  K
)
8 stowei.5 . . . 4  |-  A  C_  C
98a1i 11 . . 3  |-  ( T. 
->  A  C_  C )
10 stowei.6 . . . 4  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
11103adant1 1079 . . 3  |-  ( ( T.  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
12 stowei.7 . . . 4  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
13123adant1 1079 . . 3  |-  ( ( T.  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
14 stowei.8 . . . 4  |-  ( x  e.  RR  ->  (
t  e.  T  |->  x )  e.  A )
1514adantl 482 . . 3  |-  ( ( T.  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
16 stowei.9 . . . 4  |-  ( ( r  e.  T  /\  t  e.  T  /\  r  =/=  t )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
1716adantl 482 . . 3  |-  ( ( T.  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
18 stowei.10 . . . 4  |-  F  e.  C
1918a1i 11 . . 3  |-  ( T. 
->  F  e.  C
)
20 stowei.11 . . . 4  |-  E  e.  RR+
2120a1i 11 . . 3  |-  ( T. 
->  E  e.  RR+ )
221, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21stoweid 40280 . 2  |-  ( T. 
->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
2322trud 1493 1  |-  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  E
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   RR+crp 11832   (,)cioo 12175   abscabs 13974   topGenctg 16098    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator