MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthon Structured version   Visualization version   Unicode version

Theorem usgr2wspthon 26858
Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.)
Hypotheses
Ref Expression
usgr2wspthon0.v  |-  V  =  (Vtx `  G )
usgr2wspthon0.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
usgr2wspthon  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  ( T  e.  ( A ( 2 WSPathsNOn  G ) C )  <->  E. b  e.  V  ( ( T  = 
<" A b C ">  /\  A  =/=  C )  /\  ( { A ,  b }  e.  E  /\  {
b ,  C }  e.  E ) ) ) )
Distinct variable groups:    A, b    C, b    G, b    V, b    T, b
Allowed substitution hint:    E( b)

Proof of Theorem usgr2wspthon
StepHypRef Expression
1 usgrupgr 26077 . . . 4  |-  ( G  e. USGraph  ->  G  e. UPGraph  )
21adantr 481 . . 3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  G  e. UPGraph  )
3 simpl 473 . . . 4  |-  ( ( A  e.  V  /\  C  e.  V )  ->  A  e.  V )
43adantl 482 . . 3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  A  e.  V )
5 simpr 477 . . . 4  |-  ( ( A  e.  V  /\  C  e.  V )  ->  C  e.  V )
65adantl 482 . . 3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  C  e.  V )
7 usgr2wspthon0.v . . . 4  |-  V  =  (Vtx `  G )
87elwspths2on 26853 . . 3  |-  ( ( G  e. UPGraph  /\  A  e.  V  /\  C  e.  V )  ->  ( T  e.  ( A
( 2 WSPathsNOn  G ) C )  <->  E. b  e.  V  ( T  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WSPathsNOn  G ) C ) ) ) )
92, 4, 6, 8syl3anc 1326 . 2  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  ( T  e.  ( A ( 2 WSPathsNOn  G ) C )  <->  E. b  e.  V  ( T  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) ) ) )
10 simpl 473 . . . . . . 7  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  G  e. USGraph  )
1110adantr 481 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  G  e. USGraph  )
12 simplrl 800 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  A  e.  V )
13 simpr 477 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  b  e.  V )
14 simplrr 801 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  C  e.  V )
15 usgr2wspthon0.e . . . . . . 7  |-  E  =  (Edg `  G )
167, 15usgr2wspthons3 26857 . . . . . 6  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  b  e.  V  /\  C  e.  V )
)  ->  ( <" A b C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  <-> 
( A  =/=  C  /\  { A ,  b }  e.  E  /\  { b ,  C }  e.  E ) ) )
1711, 12, 13, 14, 16syl13anc 1328 . . . . 5  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  ( <" A b C ">  e.  ( A ( 2 WSPathsNOn  G
) C )  <->  ( A  =/=  C  /\  { A ,  b }  e.  E  /\  { b ,  C }  e.  E
) ) )
1817anbi2d 740 . . . 4  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( T  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) )  <-> 
( T  =  <" A b C ">  /\  ( A  =/= 
C  /\  { A ,  b }  e.  E  /\  { b ,  C }  e.  E
) ) ) )
19 anass 681 . . . . 5  |-  ( ( ( T  =  <" A b C ">  /\  A  =/=  C
)  /\  ( { A ,  b }  e.  E  /\  { b ,  C }  e.  E ) )  <->  ( T  =  <" A b C ">  /\  ( A  =/=  C  /\  ( { A ,  b }  e.  E  /\  {
b ,  C }  e.  E ) ) ) )
20 3anass 1042 . . . . . . 7  |-  ( ( A  =/=  C  /\  { A ,  b }  e.  E  /\  {
b ,  C }  e.  E )  <->  ( A  =/=  C  /\  ( { A ,  b }  e.  E  /\  {
b ,  C }  e.  E ) ) )
2120bicomi 214 . . . . . 6  |-  ( ( A  =/=  C  /\  ( { A ,  b }  e.  E  /\  { b ,  C }  e.  E ) )  <->  ( A  =/=  C  /\  { A ,  b }  e.  E  /\  { b ,  C }  e.  E
) )
2221anbi2i 730 . . . . 5  |-  ( ( T  =  <" A
b C ">  /\  ( A  =/=  C  /\  ( { A , 
b }  e.  E  /\  { b ,  C }  e.  E )
) )  <->  ( T  =  <" A b C ">  /\  ( A  =/=  C  /\  { A ,  b }  e.  E  /\  { b ,  C }  e.  E ) ) )
2319, 22bitri 264 . . . 4  |-  ( ( ( T  =  <" A b C ">  /\  A  =/=  C
)  /\  ( { A ,  b }  e.  E  /\  { b ,  C }  e.  E ) )  <->  ( T  =  <" A b C ">  /\  ( A  =/=  C  /\  { A ,  b }  e.  E  /\  { b ,  C }  e.  E ) ) )
2418, 23syl6bbr 278 . . 3  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( T  =  <" A b C ">  /\  <" A b C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) )  <-> 
( ( T  = 
<" A b C ">  /\  A  =/=  C )  /\  ( { A ,  b }  e.  E  /\  {
b ,  C }  e.  E ) ) ) )
2524rexbidva 3049 . 2  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  ( E. b  e.  V  ( T  =  <" A
b C ">  /\ 
<" A b C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) )  <->  E. b  e.  V  ( ( T  = 
<" A b C ">  /\  A  =/=  C )  /\  ( { A ,  b }  e.  E  /\  {
b ,  C }  e.  E ) ) ) )
269, 25bitrd 268 1  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )
)  ->  ( T  e.  ( A ( 2 WSPathsNOn  G ) C )  <->  E. b  e.  V  ( ( T  = 
<" A b C ">  /\  A  =/=  C )  /\  ( { A ,  b }  e.  E  /\  {
b ,  C }  e.  E ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {cpr 4179   ` cfv 5888  (class class class)co 6650   2c2 11070   <"cs3 13587  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975   USGraph cusgr 26044   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  fusgr2wsp2nb  27198
  Copyright terms: Public domain W3C validator