MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem4 Structured version   Visualization version   Unicode version

Theorem vitalilem4 23380
Description: Lemma for vitali 23382. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
vitali.2  |-  S  =  ( ( 0 [,] 1 ) /.  .~  )
vitali.3  |-  ( ph  ->  F  Fn  S )
vitali.4  |-  ( ph  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
vitali.5  |-  ( ph  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
vitali.6  |-  T  =  ( n  e.  NN  |->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e.  ran  F } )
vitali.7  |-  ( ph  ->  -.  ran  F  e.  ( ~P RR  \  dom  vol ) )
Assertion
Ref Expression
vitalilem4  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ( T `  m ) )  =  0 )
Distinct variable groups:    m, n, s, x, y, z, G    ph, m, n, x, z   
z, S    T, m, x    m, F, n, s, x, y, z    .~ , m, n, s, x, y, z
Allowed substitution hints:    ph( y, s)    S( x, y, m, n, s)    T( y, z, n, s)

Proof of Theorem vitalilem4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . 9  |-  ( n  =  m  ->  ( G `  n )  =  ( G `  m ) )
21oveq2d 6666 . . . . . . . 8  |-  ( n  =  m  ->  (
s  -  ( G `
 n ) )  =  ( s  -  ( G `  m ) ) )
32eleq1d 2686 . . . . . . 7  |-  ( n  =  m  ->  (
( s  -  ( G `  n )
)  e.  ran  F  <->  ( s  -  ( G `
 m ) )  e.  ran  F ) )
43rabbidv 3189 . . . . . 6  |-  ( n  =  m  ->  { s  e.  RR  |  ( s  -  ( G `
 n ) )  e.  ran  F }  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
5 vitali.6 . . . . . 6  |-  T  =  ( n  e.  NN  |->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e.  ran  F } )
6 reex 10027 . . . . . . 7  |-  RR  e.  _V
76rabex 4813 . . . . . 6  |-  { s  e.  RR  |  ( s  -  ( G `
 m ) )  e.  ran  F }  e.  _V
84, 5, 7fvmpt 6282 . . . . 5  |-  ( m  e.  NN  ->  ( T `  m )  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
98adantl 482 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
109fveq2d 6195 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ( T `  m ) )  =  ( vol* `  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } ) )
11 vitali.1 . . . . . . . 8  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
12 vitali.2 . . . . . . . 8  |-  S  =  ( ( 0 [,] 1 ) /.  .~  )
13 vitali.3 . . . . . . . 8  |-  ( ph  ->  F  Fn  S )
14 vitali.4 . . . . . . . 8  |-  ( ph  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
15 vitali.5 . . . . . . . 8  |-  ( ph  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
16 vitali.7 . . . . . . . 8  |-  ( ph  ->  -.  ran  F  e.  ( ~P RR  \  dom  vol ) )
1711, 12, 13, 14, 15, 5, 16vitalilem2 23378 . . . . . . 7  |-  ( ph  ->  ( ran  F  C_  ( 0 [,] 1
)  /\  ( 0 [,] 1 )  C_  U_ m  e.  NN  ( T `  m )  /\  U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 ) ) )
1817simp1d 1073 . . . . . 6  |-  ( ph  ->  ran  F  C_  (
0 [,] 1 ) )
19 unitssre 12319 . . . . . 6  |-  ( 0 [,] 1 )  C_  RR
2018, 19syl6ss 3615 . . . . 5  |-  ( ph  ->  ran  F  C_  RR )
2120adantr 481 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ran  F  C_  RR )
22 neg1rr 11125 . . . . . 6  |-  -u 1  e.  RR
23 1re 10039 . . . . . 6  |-  1  e.  RR
24 iccssre 12255 . . . . . 6  |-  ( (
-u 1  e.  RR  /\  1  e.  RR )  ->  ( -u 1 [,] 1 )  C_  RR )
2522, 23, 24mp2an 708 . . . . 5  |-  ( -u
1 [,] 1 ) 
C_  RR
26 inss2 3834 . . . . . 6  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  ( -u 1 [,] 1
)
27 f1of 6137 . . . . . . . 8  |-  ( G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  G : NN
--> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
2815, 27syl 17 . . . . . . 7  |-  ( ph  ->  G : NN --> ( QQ 
i^i  ( -u 1 [,] 1 ) ) )
2928ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
3026, 29sseldi 3601 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  ( -u 1 [,] 1 ) )
3125, 30sseldi 3601 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  RR )
32 eqidd 2623 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  { s  e.  RR  |  ( s  -  ( G `
 m ) )  e.  ran  F }  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
3321, 31, 32ovolshft 23279 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ran  F )  =  ( vol* `  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } ) )
3410, 33eqtr4d 2659 . 2  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ( T `  m ) )  =  ( vol* `  ran  F ) )
35 3re 11094 . . . . . . . 8  |-  3  e.  RR
3635rexri 10097 . . . . . . 7  |-  3  e.  RR*
3736a1i 11 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  3  e.  RR* )
38 3nn 11186 . . . . . . . . . . . . . 14  |-  3  e.  NN
39 nnrp 11842 . . . . . . . . . . . . . 14  |-  ( 3  e.  NN  ->  3  e.  RR+ )
4038, 39ax-mp 5 . . . . . . . . . . . . 13  |-  3  e.  RR+
41 0re 10040 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  RR
42 0le1 10551 . . . . . . . . . . . . . . . . . . . 20  |-  0  <_  1
43 ovolicc 23291 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  0  <_  1 )  ->  ( vol* `  ( 0 [,] 1 ) )  =  ( 1  -  0 ) )
4441, 23, 42, 43mp3an 1424 . . . . . . . . . . . . . . . . . . 19  |-  ( vol* `  ( 0 [,] 1 ) )  =  ( 1  -  0 )
45 1m0e1 11131 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  -  0 )  =  1
4644, 45eqtri 2644 . . . . . . . . . . . . . . . . . 18  |-  ( vol* `  ( 0 [,] 1 ) )  =  1
4746, 23eqeltri 2697 . . . . . . . . . . . . . . . . 17  |-  ( vol* `  ( 0 [,] 1 ) )  e.  RR
48 ovolsscl 23254 . . . . . . . . . . . . . . . . 17  |-  ( ( ran  F  C_  (
0 [,] 1 )  /\  ( 0 [,] 1 )  C_  RR  /\  ( vol* `  ( 0 [,] 1
) )  e.  RR )  ->  ( vol* `  ran  F )  e.  RR )
4919, 47, 48mp3an23 1416 . . . . . . . . . . . . . . . 16  |-  ( ran 
F  C_  ( 0 [,] 1 )  -> 
( vol* `  ran  F )  e.  RR )
5018, 49syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( vol* `  ran  F )  e.  RR )
5150adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  ran  F
)  e.  RR )
52 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  0  <  ( vol* `  ran  F ) )
5351, 52elrpd 11869 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  ran  F
)  e.  RR+ )
54 rpdivcl 11856 . . . . . . . . . . . . 13  |-  ( ( 3  e.  RR+  /\  ( vol* `  ran  F
)  e.  RR+ )  ->  ( 3  /  ( vol* `  ran  F
) )  e.  RR+ )
5540, 53, 54sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
3  /  ( vol* `  ran  F ) )  e.  RR+ )
5655rpred 11872 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
3  /  ( vol* `  ran  F ) )  e.  RR )
5755rpge0d 11876 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  0  <_  ( 3  /  ( vol* `  ran  F
) ) )
58 flge0nn0 12621 . . . . . . . . . . 11  |-  ( ( ( 3  /  ( vol* `  ran  F
) )  e.  RR  /\  0  <_  ( 3  /  ( vol* `  ran  F ) ) )  ->  ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  e. 
NN0 )
5956, 57, 58syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( |_ `  ( 3  / 
( vol* `  ran  F ) ) )  e.  NN0 )
60 nn0p1nn 11332 . . . . . . . . . 10  |-  ( ( |_ `  ( 3  /  ( vol* `  ran  F ) ) )  e.  NN0  ->  ( ( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 )  e.  NN )
6159, 60syl 17 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 )  e.  NN )
6261nnred 11035 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 )  e.  RR )
6362, 51remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) )  e.  RR )
6463rexrd 10089 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) )  e.  RR* )
656elpw2 4828 . . . . . . . . . . . . . . . . . . 19  |-  ( ran 
F  e.  ~P RR  <->  ran 
F  C_  RR )
6620, 65sylibr 224 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ran  F  e.  ~P RR )
6766anim1i 592 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  ran  F  e.  dom  vol )  -> 
( ran  F  e.  ~P RR  /\  -.  ran  F  e.  dom  vol )
)
68 eldif 3584 . . . . . . . . . . . . . . . . 17  |-  ( ran 
F  e.  ( ~P RR  \  dom  vol ) 
<->  ( ran  F  e. 
~P RR  /\  -.  ran  F  e.  dom  vol ) )
6967, 68sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  ran  F  e.  dom  vol )  ->  ran  F  e.  ( ~P RR  \  dom  vol ) )
7069ex 450 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( -.  ran  F  e.  dom  vol  ->  ran  F  e.  ( ~P RR  \  dom  vol ) ) )
7116, 70mt3d 140 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  F  e.  dom  vol )
7271adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ran  F  e.  dom  vol )
73 inss1 3833 . . . . . . . . . . . . . . . 16  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  QQ
74 qssre 11798 . . . . . . . . . . . . . . . 16  |-  QQ  C_  RR
7573, 74sstri 3612 . . . . . . . . . . . . . . 15  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  RR
76 fss 6056 . . . . . . . . . . . . . . 15  |-  ( ( G : NN --> ( QQ 
i^i  ( -u 1 [,] 1 ) )  /\  ( QQ  i^i  ( -u 1 [,] 1 ) )  C_  RR )  ->  G : NN --> RR )
7728, 75, 76sylancl 694 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : NN --> RR )
7877ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  RR )
79 shftmbl 23306 . . . . . . . . . . . . 13  |-  ( ( ran  F  e.  dom  vol 
/\  ( G `  n )  e.  RR )  ->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e. 
ran  F }  e.  dom  vol )
8072, 78, 79syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  { s  e.  RR  |  ( s  -  ( G `
 n ) )  e.  ran  F }  e.  dom  vol )
8180, 5fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  T : NN --> dom  vol )
8281ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  e. 
dom  vol )
8382ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  NN  ( T `  m )  e.  dom  vol )
84 iunmbl 23321 . . . . . . . . 9  |-  ( A. m  e.  NN  ( T `  m )  e.  dom  vol  ->  U_ m  e.  NN  ( T `  m )  e.  dom  vol )
8583, 84syl 17 . . . . . . . 8  |-  ( ph  ->  U_ m  e.  NN  ( T `  m )  e.  dom  vol )
86 mblss 23299 . . . . . . . 8  |-  ( U_ m  e.  NN  ( T `  m )  e.  dom  vol  ->  U_ m  e.  NN  ( T `  m )  C_  RR )
87 ovolcl 23246 . . . . . . . 8  |-  ( U_ m  e.  NN  ( T `  m )  C_  RR  ->  ( vol* `  U_ m  e.  NN  ( T `  m ) )  e. 
RR* )
8885, 86, 873syl 18 . . . . . . 7  |-  ( ph  ->  ( vol* `  U_ m  e.  NN  ( T `  m )
)  e.  RR* )
8988adantr 481 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  U_ m  e.  NN  ( T `  m ) )  e. 
RR* )
90 flltp1 12601 . . . . . . . 8  |-  ( ( 3  /  ( vol* `  ran  F ) )  e.  RR  ->  ( 3  /  ( vol* `  ran  F ) )  <  ( ( |_ `  ( 3  /  ( vol* `  ran  F ) ) )  +  1 ) )
9156, 90syl 17 . . . . . . 7  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
3  /  ( vol* `  ran  F ) )  <  ( ( |_ `  ( 3  /  ( vol* `  ran  F ) ) )  +  1 ) )
9235a1i 11 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  3  e.  RR )
9392, 62, 53ltdivmul2d 11924 . . . . . . 7  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( 3  /  ( vol* `  ran  F
) )  <  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 )  <->  3  <  (
( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) ) ) )
9491, 93mpbid 222 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  3  <  ( ( ( |_
`  ( 3  / 
( vol* `  ran  F ) ) )  +  1 )  x.  ( vol* `  ran  F ) ) )
95 nnuz 11723 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
96 1zzd 11408 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  1  e.  ZZ )
97 mblvol 23298 . . . . . . . . . . . . . . . . 17  |-  ( ( T `  m )  e.  dom  vol  ->  ( vol `  ( T `
 m ) )  =  ( vol* `  ( T `  m
) ) )
9882, 97syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol `  ( T `  m
) )  =  ( vol* `  ( T `  m )
) )
9998, 34eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol `  ( T `  m
) )  =  ( vol* `  ran  F ) )
10050adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ran  F )  e.  RR )
10199, 100eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol `  ( T `  m
) )  e.  RR )
102101adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  ( vol* `  ran  F ) )  /\  m  e.  NN )  ->  ( vol `  ( T `  m )
)  e.  RR )
103 eqid 2622 . . . . . . . . . . . . 13  |-  ( m  e.  NN  |->  ( vol `  ( T `  m
) ) )  =  ( m  e.  NN  |->  ( vol `  ( T `
 m ) ) )
104102, 103fmptd 6385 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) : NN --> RR )
105104ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  ( vol* `  ran  F ) )  /\  k  e.  NN )  ->  ( ( m  e.  NN  |->  ( vol `  ( T `  m )
) ) `  k
)  e.  RR )
10695, 96, 105serfre 12830 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) : NN --> RR )
107 frn 6053 . . . . . . . . . 10  |-  (  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) : NN --> RR  ->  ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )  C_  RR )
108106, 107syl 17 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )  C_  RR )
109 ressxr 10083 . . . . . . . . 9  |-  RR  C_  RR*
110108, 109syl6ss 3615 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )  C_  RR* )
11199adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  ( vol* `  ran  F ) )  /\  m  e.  NN )  ->  ( vol `  ( T `  m )
)  =  ( vol* `  ran  F ) )
112111mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
m  e.  NN  |->  ( vol `  ( T `
 m ) ) )  =  ( m  e.  NN  |->  ( vol* `  ran  F ) ) )
113 fconstmpt 5163 . . . . . . . . . . . . 13  |-  ( NN 
X.  { ( vol* `  ran  F ) } )  =  ( m  e.  NN  |->  ( vol* `  ran  F ) )
114112, 113syl6eqr 2674 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
m  e.  NN  |->  ( vol `  ( T `
 m ) ) )  =  ( NN 
X.  { ( vol* `  ran  F ) } ) )
115114seqeq3d 12809 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )  =  seq 1 (  +  , 
( NN  X.  {
( vol* `  ran  F ) } ) ) )
116115fveq1d 6193 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) `  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 ) )  =  (  seq 1 (  +  ,  ( NN  X.  { ( vol* `  ran  F ) } ) ) `  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 ) ) )
11751recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  ran  F
)  e.  CC )
118 ser1const 12857 . . . . . . . . . . 11  |-  ( ( ( vol* `  ran  F )  e.  CC  /\  ( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  e.  NN )  ->  (  seq 1
(  +  ,  ( NN  X.  { ( vol* `  ran  F ) } ) ) `
 ( ( |_
`  ( 3  / 
( vol* `  ran  F ) ) )  +  1 ) )  =  ( ( ( |_ `  ( 3  /  ( vol* `  ran  F ) ) )  +  1 )  x.  ( vol* `  ran  F ) ) )
119117, 61, 118syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (  seq 1 (  +  , 
( NN  X.  {
( vol* `  ran  F ) } ) ) `  ( ( |_ `  ( 3  /  ( vol* `  ran  F ) ) )  +  1 ) )  =  ( ( ( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 )  x.  ( vol* `  ran  F ) ) )
120116, 119eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) `  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 ) )  =  ( ( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) ) )
121 ffn 6045 . . . . . . . . . . 11  |-  (  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) : NN --> RR  ->  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m )
) ) )  Fn  NN )
122106, 121syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )  Fn  NN )
123 fnfvelrn 6356 . . . . . . . . . 10  |-  ( (  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m )
) ) )  Fn  NN  /\  ( ( |_ `  ( 3  /  ( vol* `  ran  F ) ) )  +  1 )  e.  NN )  -> 
(  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m )
) ) ) `  ( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 ) )  e. 
ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m )
) ) ) )
124122, 61, 123syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) `  (
( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 ) )  e.  ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) )
125120, 124eqeltrrd 2702 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) )  e.  ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) )
126 supxrub 12154 . . . . . . . 8  |-  ( ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m
) ) ) ) 
C_  RR*  /\  ( ( ( |_ `  (
3  /  ( vol* `  ran  F ) ) )  +  1 )  x.  ( vol* `  ran  F ) )  e.  ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) )  -> 
( ( ( |_
`  ( 3  / 
( vol* `  ran  F ) ) )  +  1 )  x.  ( vol* `  ran  F ) )  <_  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) ,  RR* ,  <  ) )
127110, 125, 126syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) )  <_  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m
) ) ) ) ,  RR* ,  <  )
)
12885adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  U_ m  e.  NN  ( T `  m )  e.  dom  vol )
129 mblvol 23298 . . . . . . . . 9  |-  ( U_ m  e.  NN  ( T `  m )  e.  dom  vol  ->  ( vol `  U_ m  e.  NN  ( T `  m ) )  =  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
130128, 129syl 17 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol `  U_ m  e.  NN  ( T `  m ) )  =  ( vol* `  U_ m  e.  NN  ( T `  m )
) )
13182, 101jca 554 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( T `  m )  e.  dom  vol  /\  ( vol `  ( T `
 m ) )  e.  RR ) )
132131ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  NN  ( ( T `  m )  e.  dom  vol 
/\  ( vol `  ( T `  m )
)  e.  RR ) )
133132adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  A. m  e.  NN  ( ( T `
 m )  e. 
dom  vol  /\  ( vol `  ( T `  m
) )  e.  RR ) )
13411, 12, 13, 14, 15, 5, 16vitalilem3 23379 . . . . . . . . . 10  |-  ( ph  -> Disj  m  e.  NN  ( T `  m )
)
135134adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  -> Disj  m  e.  NN  ( T `  m ) )
136 eqid 2622 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )  =  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) )
137136, 103voliun 23322 . . . . . . . . 9  |-  ( ( A. m  e.  NN  ( ( T `  m )  e.  dom  vol 
/\  ( vol `  ( T `  m )
)  e.  RR )  /\ Disj  m  e.  NN  ( T `  m )
)  ->  ( vol ` 
U_ m  e.  NN  ( T `  m ) )  =  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol `  ( T `  m )
) ) ) , 
RR* ,  <  ) )
138133, 135, 137syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol `  U_ m  e.  NN  ( T `  m ) )  =  sup ( ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) ,  RR* ,  <  ) )
139130, 138eqtr3d 2658 . . . . . . 7  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  U_ m  e.  NN  ( T `  m ) )  =  sup ( ran  seq 1 (  +  , 
( m  e.  NN  |->  ( vol `  ( T `
 m ) ) ) ) ,  RR* ,  <  ) )
140127, 139breqtrrd 4681 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( ( |_ `  ( 3  /  ( vol* `  ran  F
) ) )  +  1 )  x.  ( vol* `  ran  F
) )  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
14137, 64, 89, 94, 140xrltletrd 11992 . . . . 5  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  3  <  ( vol* `  U_ m  e.  NN  ( T `  m )
) )
14217simp3d 1075 . . . . . . . . 9  |-  ( ph  ->  U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 ) )
143142adantr 481 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  U_ m  e.  NN  ( T `  m )  C_  ( -u 1 [,] 2 ) )
144 2re 11090 . . . . . . . . 9  |-  2  e.  RR
145 iccssre 12255 . . . . . . . . 9  |-  ( (
-u 1  e.  RR  /\  2  e.  RR )  ->  ( -u 1 [,] 2 )  C_  RR )
14622, 144, 145mp2an 708 . . . . . . . 8  |-  ( -u
1 [,] 2 ) 
C_  RR
147 ovolss 23253 . . . . . . . 8  |-  ( (
U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 )  /\  ( -u 1 [,] 2 ) 
C_  RR )  -> 
( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  ( vol* `  ( -u 1 [,] 2 ) ) )
148143, 146, 147sylancl 694 . . . . . . 7  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  U_ m  e.  NN  ( T `  m ) )  <_ 
( vol* `  ( -u 1 [,] 2
) ) )
149 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
150 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
151149, 150subnegi 10360 . . . . . . . 8  |-  ( 2  -  -u 1 )  =  ( 2  +  1 )
152 neg1lt0 11127 . . . . . . . . . . 11  |-  -u 1  <  0
153 2pos 11112 . . . . . . . . . . 11  |-  0  <  2
15422, 41, 144lttri 10163 . . . . . . . . . . 11  |-  ( (
-u 1  <  0  /\  0  <  2
)  ->  -u 1  <  2 )
155152, 153, 154mp2an 708 . . . . . . . . . 10  |-  -u 1  <  2
15622, 144, 155ltleii 10160 . . . . . . . . 9  |-  -u 1  <_  2
157 ovolicc 23291 . . . . . . . . 9  |-  ( (
-u 1  e.  RR  /\  2  e.  RR  /\  -u 1  <_  2 )  ->  ( vol* `  ( -u 1 [,] 2 ) )  =  ( 2  -  -u 1
) )
15822, 144, 156, 157mp3an 1424 . . . . . . . 8  |-  ( vol* `  ( -u 1 [,] 2 ) )  =  ( 2  -  -u 1
)
159 df-3 11080 . . . . . . . 8  |-  3  =  ( 2  +  1 )
160151, 158, 1593eqtr4i 2654 . . . . . . 7  |-  ( vol* `  ( -u 1 [,] 2 ) )  =  3
161148, 160syl6breq 4694 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  ( vol* `  U_ m  e.  NN  ( T `  m ) )  <_ 
3 )
162 xrlenlt 10103 . . . . . . 7  |-  ( ( ( vol* `  U_ m  e.  NN  ( T `  m )
)  e.  RR*  /\  3  e.  RR* )  ->  (
( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  3  <->  -.  3  <  ( vol* `  U_ m  e.  NN  ( T `  m )
) ) )
16389, 36, 162sylancl 694 . . . . . 6  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  (
( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  3  <->  -.  3  <  ( vol* `  U_ m  e.  NN  ( T `  m )
) ) )
164161, 163mpbid 222 . . . . 5  |-  ( (
ph  /\  0  <  ( vol* `  ran  F ) )  ->  -.  3  <  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
165141, 164pm2.65da 600 . . . 4  |-  ( ph  ->  -.  0  <  ( vol* `  ran  F
) )
166 ovolge0 23249 . . . . . . 7  |-  ( ran 
F  C_  RR  ->  0  <_  ( vol* `  ran  F ) )
16720, 166syl 17 . . . . . 6  |-  ( ph  ->  0  <_  ( vol* `  ran  F ) )
168 0xr 10086 . . . . . . 7  |-  0  e.  RR*
169 ovolcl 23246 . . . . . . . 8  |-  ( ran 
F  C_  RR  ->  ( vol* `  ran  F )  e.  RR* )
17020, 169syl 17 . . . . . . 7  |-  ( ph  ->  ( vol* `  ran  F )  e.  RR* )
171 xrleloe 11977 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  ( vol* `  ran  F
)  e.  RR* )  ->  ( 0  <_  ( vol* `  ran  F
)  <->  ( 0  < 
( vol* `  ran  F )  \/  0  =  ( vol* `  ran  F ) ) ) )
172168, 170, 171sylancr 695 . . . . . 6  |-  ( ph  ->  ( 0  <_  ( vol* `  ran  F
)  <->  ( 0  < 
( vol* `  ran  F )  \/  0  =  ( vol* `  ran  F ) ) ) )
173167, 172mpbid 222 . . . . 5  |-  ( ph  ->  ( 0  <  ( vol* `  ran  F
)  \/  0  =  ( vol* `  ran  F ) ) )
174173ord 392 . . . 4  |-  ( ph  ->  ( -.  0  < 
( vol* `  ran  F )  ->  0  =  ( vol* `  ran  F ) ) )
175165, 174mpd 15 . . 3  |-  ( ph  ->  0  =  ( vol* `  ran  F ) )
176175adantr 481 . 2  |-  ( (
ph  /\  m  e.  NN )  ->  0  =  ( vol* `  ran  F ) )
17734, 176eqtr4d 2659 1  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ( T `  m ) )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   /.cqs 7741   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   QQcq 11788   RR+crp 11832   [,]cicc 12178   |_cfl 12591    seqcseq 12801   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  vitalilem5  23381
  Copyright terms: Public domain W3C validator