| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xralrple3 | Structured version Visualization version Unicode version | ||
| Description: Show that |
| Ref | Expression |
|---|---|
| xralrple3.a |
|
| xralrple3.b |
|
| xralrple3.c |
|
| xralrple3.g |
|
| Ref | Expression |
|---|---|
| xralrple3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xralrple3.a |
. . . . . 6
| |
| 2 | 1 | ad2antrr 762 |
. . . . 5
|
| 3 | xralrple3.b |
. . . . . . 7
| |
| 4 | 3 | rexrd 10089 |
. . . . . 6
|
| 5 | 4 | ad2antrr 762 |
. . . . 5
|
| 6 | 3 | ad2antrr 762 |
. . . . . . 7
|
| 7 | xralrple3.c |
. . . . . . . . 9
| |
| 8 | 7 | ad2antrr 762 |
. . . . . . . 8
|
| 9 | rpre 11839 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 482 |
. . . . . . . 8
|
| 11 | 8, 10 | remulcld 10070 |
. . . . . . 7
|
| 12 | 6, 11 | readdcld 10069 |
. . . . . 6
|
| 13 | 12 | rexrd 10089 |
. . . . 5
|
| 14 | simplr 792 |
. . . . 5
| |
| 15 | 7 | adantr 481 |
. . . . . . . 8
|
| 16 | 9 | adantl 482 |
. . . . . . . 8
|
| 17 | xralrple3.g |
. . . . . . . . 9
| |
| 18 | 17 | adantr 481 |
. . . . . . . 8
|
| 19 | rpge0 11845 |
. . . . . . . . 9
| |
| 20 | 19 | adantl 482 |
. . . . . . . 8
|
| 21 | 15, 16, 18, 20 | mulge0d 10604 |
. . . . . . 7
|
| 22 | 3 | adantr 481 |
. . . . . . . 8
|
| 23 | 15, 16 | remulcld 10070 |
. . . . . . . 8
|
| 24 | 22, 23 | addge01d 10615 |
. . . . . . 7
|
| 25 | 21, 24 | mpbid 222 |
. . . . . 6
|
| 26 | 25 | adantlr 751 |
. . . . 5
|
| 27 | 2, 5, 13, 14, 26 | xrletrd 11993 |
. . . 4
|
| 28 | 27 | ralrimiva 2966 |
. . 3
|
| 29 | 28 | ex 450 |
. 2
|
| 30 | 1rp 11836 |
. . . . . . 7
| |
| 31 | oveq2 6658 |
. . . . . . . . . 10
| |
| 32 | 31 | oveq2d 6666 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 4665 |
. . . . . . . 8
|
| 34 | 33 | rspcva 3307 |
. . . . . . 7
|
| 35 | 30, 34 | mpan 706 |
. . . . . 6
|
| 36 | 35 | ad2antlr 763 |
. . . . 5
|
| 37 | oveq1 6657 |
. . . . . . . . . 10
| |
| 38 | 0cn 10032 |
. . . . . . . . . . . 12
| |
| 39 | 38 | mulid1i 10042 |
. . . . . . . . . . 11
|
| 40 | 39 | a1i 11 |
. . . . . . . . . 10
|
| 41 | 37, 40 | eqtrd 2656 |
. . . . . . . . 9
|
| 42 | 41 | oveq2d 6666 |
. . . . . . . 8
|
| 43 | 42 | adantl 482 |
. . . . . . 7
|
| 44 | 3 | recnd 10068 |
. . . . . . . . 9
|
| 45 | 44 | adantr 481 |
. . . . . . . 8
|
| 46 | 45 | addid1d 10236 |
. . . . . . 7
|
| 47 | 43, 46 | eqtrd 2656 |
. . . . . 6
|
| 48 | 47 | adantlr 751 |
. . . . 5
|
| 49 | 36, 48 | breqtrd 4679 |
. . . 4
|
| 50 | neqne 2802 |
. . . . . . . 8
| |
| 51 | 50 | adantl 482 |
. . . . . . 7
|
| 52 | 7 | adantr 481 |
. . . . . . . 8
|
| 53 | 0red 10041 |
. . . . . . . . 9
| |
| 54 | 17 | adantr 481 |
. . . . . . . . 9
|
| 55 | simpr 477 |
. . . . . . . . 9
| |
| 56 | 53, 52, 54, 55 | leneltd 10191 |
. . . . . . . 8
|
| 57 | 52, 56 | elrpd 11869 |
. . . . . . 7
|
| 58 | 51, 57 | syldan 487 |
. . . . . 6
|
| 59 | 58 | adantlr 751 |
. . . . 5
|
| 60 | simpr 477 |
. . . . . . . . . . . 12
| |
| 61 | simpl 473 |
. . . . . . . . . . . 12
| |
| 62 | 60, 61 | rpdivcld 11889 |
. . . . . . . . . . 11
|
| 63 | 62 | adantll 750 |
. . . . . . . . . 10
|
| 64 | simpll 790 |
. . . . . . . . . 10
| |
| 65 | oveq2 6658 |
. . . . . . . . . . . . 13
| |
| 66 | 65 | oveq2d 6666 |
. . . . . . . . . . . 12
|
| 67 | 66 | breq2d 4665 |
. . . . . . . . . . 11
|
| 68 | 67 | rspcva 3307 |
. . . . . . . . . 10
|
| 69 | 63, 64, 68 | syl2anc 693 |
. . . . . . . . 9
|
| 70 | 69 | adantlll 754 |
. . . . . . . 8
|
| 71 | 60 | rpcnd 11874 |
. . . . . . . . . . 11
|
| 72 | 61 | rpcnd 11874 |
. . . . . . . . . . 11
|
| 73 | 61 | rpne0d 11877 |
. . . . . . . . . . 11
|
| 74 | 71, 72, 73 | divcan2d 10803 |
. . . . . . . . . 10
|
| 75 | 74 | adantll 750 |
. . . . . . . . 9
|
| 76 | 75 | oveq2d 6666 |
. . . . . . . 8
|
| 77 | 70, 76 | breqtrd 4679 |
. . . . . . 7
|
| 78 | 77 | ralrimiva 2966 |
. . . . . 6
|
| 79 | xralrple 12036 |
. . . . . . . 8
| |
| 80 | 1, 3, 79 | syl2anc 693 |
. . . . . . 7
|
| 81 | 80 | ad2antrr 762 |
. . . . . 6
|
| 82 | 78, 81 | mpbird 247 |
. . . . 5
|
| 83 | 59, 82 | syldan 487 |
. . . 4
|
| 84 | 49, 83 | pm2.61dan 832 |
. . 3
|
| 85 | 84 | ex 450 |
. 2
|
| 86 | 29, 85 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |