Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosax Structured version   Visualization version   GIF version

Theorem dvcosax 40141
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvcosax (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcosax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mulcl 10020 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 eqidd 2623 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))
3 cosf 14855 . . . . . . . 8 cos:ℂ⟶ℂ
43a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → cos:ℂ⟶ℂ)
54feqmptd 6249 . . . . . 6 (𝐴 ∈ ℂ → cos = (𝑦 ∈ ℂ ↦ (cos‘𝑦)))
6 fveq2 6191 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → (cos‘𝑦) = (cos‘(𝐴 · 𝑥)))
71, 2, 5, 6fmptco 6396 . . . . 5 (𝐴 ∈ ℂ → (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))))
87eqcomd 2628 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))) = (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))
98oveq2d 6666 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
10 cnelprrecn 10029 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
12 eqid 2622 . . . . 5 (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
131, 12fmptd 6385 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)):ℂ⟶ℂ)
14 dvcos 23746 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1514dmeqi 5325 . . . . . 6 dom (ℂ D cos) = dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
16 dmmptg 5632 . . . . . . 7 (∀𝑥 ∈ ℂ -(sin‘𝑥) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ)
17 sincl 14856 . . . . . . . 8 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
1817negcld 10379 . . . . . . 7 (𝑥 ∈ ℂ → -(sin‘𝑥) ∈ ℂ)
1916, 18mprg 2926 . . . . . 6 dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ
2015, 19eqtri 2644 . . . . 5 dom (ℂ D cos) = ℂ
2120a1i 11 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D cos) = ℂ)
22 simpl 473 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
23 0red 10041 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℝ)
24 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2511, 24dvmptc 23721 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
26 simpr 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
27 1red 10055 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℝ)
2811dvmptid 23720 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
2911, 22, 23, 25, 26, 27, 28dvmptmul 23724 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
3029dmeqd 5326 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
31 dmmptg 5632 . . . . . 6 (∀𝑥 ∈ ℂ ((0 · 𝑥) + (1 · 𝐴)) ∈ V → dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ)
32 ovex 6678 . . . . . . 7 ((0 · 𝑥) + (1 · 𝐴)) ∈ V
3332a1i 11 . . . . . 6 (𝑥 ∈ ℂ → ((0 · 𝑥) + (1 · 𝐴)) ∈ V)
3431, 33mprg 2926 . . . . 5 dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ
3530, 34syl6eq 2672 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = ℂ)
3611, 11, 4, 13, 21, 35dvcof 23711 . . 3 (𝐴 ∈ ℂ → (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
37 dvcos 23746 . . . . . . 7 (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦))
3837a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦)))
39 fveq2 6191 . . . . . . 7 (𝑦 = (𝐴 · 𝑥) → (sin‘𝑦) = (sin‘(𝐴 · 𝑥)))
4039negeqd 10275 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝐴 · 𝑥)))
411, 2, 38, 40fmptco 6396 . . . . 5 (𝐴 ∈ ℂ → ((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
4241oveq1d 6665 . . . 4 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
43 cnex 10017 . . . . . . 7 ℂ ∈ V
4443mptex 6486 . . . . . 6 (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V
45 ovex 6678 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V
46 offval3 7162 . . . . . 6 (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
4744, 45, 46mp2an 708 . . . . 5 ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)))
4847a1i 11 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
491sincld 14860 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
5049negcld 10379 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
5150ralrimiva 2966 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
52 dmmptg 5632 . . . . . . . 8 (∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5351, 52syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5453, 35ineq12d 3815 . . . . . 6 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (ℂ ∩ ℂ))
55 inidm 3822 . . . . . 6 (ℂ ∩ ℂ) = ℂ
5654, 55syl6eq 2672 . . . . 5 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
57 simpr 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
5856adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
5957, 58eleqtrd 2703 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ ℂ)
60 eqidd 2623 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
61 oveq2 6658 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6261fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (sin‘(𝐴 · 𝑥)) = (sin‘(𝐴 · 𝑦)))
6362negeqd 10275 . . . . . . . . . . 11 (𝑥 = 𝑦 → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
6463adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 = 𝑦) → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
65 id 22 . . . . . . . . . 10 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
66 negex 10279 . . . . . . . . . . 11 -(sin‘(𝐴 · 𝑦)) ∈ V
6766a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℂ → -(sin‘(𝐴 · 𝑦)) ∈ V)
6860, 64, 65, 67fvmptd 6288 . . . . . . . . 9 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6968adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
7029adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
71 oveq2 6658 . . . . . . . . . . 11 (𝑥 = 𝑦 → (0 · 𝑥) = (0 · 𝑦))
7271oveq1d 6665 . . . . . . . . . 10 (𝑥 = 𝑦 → ((0 · 𝑥) + (1 · 𝐴)) = ((0 · 𝑦) + (1 · 𝐴)))
73 mul02 10214 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0 · 𝑦) = 0)
74 mulid2 10038 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
7573, 74oveqan12rd 6670 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
76 addid2 10219 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
7776adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
7875, 77eqtrd 2656 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
7972, 78sylan9eqr 2678 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 = 𝑦) → ((0 · 𝑥) + (1 · 𝐴)) = 𝐴)
80 simpr 477 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
81 simpl 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
8270, 79, 80, 81fvmptd 6288 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦) = 𝐴)
8369, 82oveq12d 6668 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (-(sin‘(𝐴 · 𝑦)) · 𝐴))
84 mulcl 10020 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
8584sincld 14860 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
8685negcld 10379 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
8786, 81mulcomd 10061 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-(sin‘(𝐴 · 𝑦)) · 𝐴) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8883, 87eqtrd 2656 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8959, 88syldan 487 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
9056, 89mpteq12dva 4732 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
9142, 48, 903eqtrd 2660 . . 3 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘𝑓 · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
929, 36, 913eqtrd 2660 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
93 oveq2 6658 . . . . . 6 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
9493fveq2d 6195 . . . . 5 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
9594negeqd 10275 . . . 4 (𝑦 = 𝑥 → -(sin‘(𝐴 · 𝑦)) = -(sin‘(𝐴 · 𝑥)))
9695oveq2d 6666 . . 3 (𝑦 = 𝑥 → (𝐴 · -(sin‘(𝐴 · 𝑦))) = (𝐴 · -(sin‘(𝐴 · 𝑥))))
9796cbvmptv 4750 . 2 (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))
9892, 97syl6eq 2672 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  {cpr 4179  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  sincsin 14794  cosccos 14795   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  itgsincmulx  40190
  Copyright terms: Public domain W3C validator