Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem18 Structured version   Visualization version   GIF version

Theorem fourierdlem18 40342
Description: The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem18.n (𝜑𝑁 ∈ ℝ)
fourierdlem18.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
Assertion
Ref Expression
fourierdlem18 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Distinct variable groups:   𝑁,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑆(𝑠)

Proof of Theorem fourierdlem18
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resincncf 40088 . . . . 5 (sin ↾ ℝ) ∈ (ℝ–cn→ℝ)
2 cncff 22696 . . . . 5 ((sin ↾ ℝ) ∈ (ℝ–cn→ℝ) → (sin ↾ ℝ):ℝ⟶ℝ)
31, 2ax-mp 5 . . . 4 (sin ↾ ℝ):ℝ⟶ℝ
4 fourierdlem18.n . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
5 halfre 11246 . . . . . . . . 9 (1 / 2) ∈ ℝ
65a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
74, 6readdcld 10069 . . . . . . 7 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
9 pire 24210 . . . . . . . . . 10 π ∈ ℝ
109renegcli 10342 . . . . . . . . 9 -π ∈ ℝ
11 iccssre 12255 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
1210, 9, 11mp2an 708 . . . . . . . 8 (-π[,]π) ⊆ ℝ
1312sseli 3599 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
1413adantl 482 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
158, 14remulcld 10070 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
16 eqid 2622 . . . . 5 (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))
1715, 16fmptd 6385 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ)
18 fcompt 6400 . . . 4 (((sin ↾ ℝ):ℝ⟶ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
193, 17, 18sylancr 695 . . 3 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
20 eqidd 2623 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)))
21 oveq2 6658 . . . . . . . 8 (𝑠 = 𝑥 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
2221adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ (-π[,]π)) ∧ 𝑠 = 𝑥) → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
23 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ (-π[,]π))
247adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
2512, 23sseldi 3601 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
2624, 25remulcld 10070 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ)
2720, 22, 23, 26fvmptd 6288 . . . . . 6 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥) = ((𝑁 + (1 / 2)) · 𝑥))
2827fveq2d 6195 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥)) = ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)))
2928mpteq2dva 4744 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))))
30 fvres 6207 . . . . . 6 (((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3126, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3231mpteq2dva 4744 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))))
33 oveq2 6658 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 + (1 / 2)) · 𝑥) = ((𝑁 + (1 / 2)) · 𝑠))
3433fveq2d 6195 . . . . . 6 (𝑥 = 𝑠 → (sin‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3534cbvmptv 4750 . . . . 5 (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3635a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
3729, 32, 363eqtrd 2660 . . 3 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
38 fourierdlem18.s . . . . 5 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3938eqcomi 2631 . . . 4 (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆
4039a1i 11 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆)
4119, 37, 403eqtrrd 2661 . 2 (𝜑𝑆 = ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))))
42 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
4312, 42sstri 3612 . . . . . . 7 (-π[,]π) ⊆ ℂ
4443a1i 11 . . . . . 6 (𝜑 → (-π[,]π) ⊆ ℂ)
454recnd 10068 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
46 halfcn 11247 . . . . . . . 8 (1 / 2) ∈ ℂ
4746a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
4845, 47addcld 10059 . . . . . 6 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
49 ssid 3624 . . . . . . 7 ℂ ⊆ ℂ
5049a1i 11 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
5144, 48, 50constcncfg 40084 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (𝑁 + (1 / 2))) ∈ ((-π[,]π)–cn→ℂ))
5244, 50idcncfg 40085 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ 𝑠) ∈ ((-π[,]π)–cn→ℂ))
5351, 52mulcncf 23215 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℂ))
54 ssid 3624 . . . . 5 (-π[,]π) ⊆ (-π[,]π)
5554a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ (-π[,]π))
5642a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
5716, 53, 55, 56, 15cncfmptssg 40083 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℝ))
581a1i 11 . . 3 (𝜑 → (sin ↾ ℝ) ∈ (ℝ–cn→ℝ))
5957, 58cncfco 22710 . 2 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) ∈ ((-π[,]π)–cn→ℝ))
6041, 59eqeltrd 2701 1 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574  cmpt 4729  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267   / cdiv 10684  2c2 11070  [,]cicc 12178  sincsin 14794  πcpi 14797  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem85  40408  fourierdlem88  40411
  Copyright terms: Public domain W3C validator