Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isosctrlem1ALT Structured version   Visualization version   GIF version

Theorem isosctrlem1ALT 39170
Description: Lemma for isosctr 24551. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart http://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html. As it is verified by the Metamath program, isosctrlem1ALT 39170 verifies http://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
isosctrlem1ALT ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)

Proof of Theorem isosctrlem1ALT
StepHypRef Expression
1 ax-1cn 9994 . . . . . . . 8 1 ∈ ℂ
21a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 3subcld 10392 . . . . . 6 (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ)
54adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
6 subeq0 10307 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
76biimpd 219 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
87idiALT 38683 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
91, 3, 8sylancr 695 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
109con3d 148 . . . . . . 7 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0))
11 df-ne 2795 . . . . . . . 8 ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0)
1211biimpri 218 . . . . . . 7 (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0)
1310, 12syl6 35 . . . . . 6 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0))
1413imp 445 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
155, 14logcld 24317 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
1615imcld 13935 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
17163adant2 1080 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
18 pire 24210 . . . . 5 π ∈ ℝ
19 2re 11090 . . . . 5 2 ∈ ℝ
20 2ne0 11113 . . . . 5 2 ≠ 0
2118, 19, 20redivcli 10792 . . . 4 (π / 2) ∈ ℝ
2221a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ)
2318a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → π ∈ ℝ)
24 neghalfpirx 24218 . . . 4 -(π / 2) ∈ ℝ*
2521rexri 10097 . . . 4 (π / 2) ∈ ℝ*
263recld 13934 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2726recnd 10068 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
2827subidd 10380 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
2928adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
30 1re 10039 . . . . . . . . . 10 1 ∈ ℝ
3130a1i 11 . . . . . . . . 9 (1 ∈ ℂ → 1 ∈ ℝ)
321, 31ax-mp 5 . . . . . . . 8 1 ∈ ℝ
333releabsd 14190 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
3433adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴))
35 id 22 . . . . . . . . . 10 ((abs‘𝐴) = 1 → (abs‘𝐴) = 1)
3635adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
3734, 36breqtrd 4679 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1)
38 lesub1 10522 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))))
39383impcombi 39044 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4039idiALT 38683 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4132, 26, 37, 40mp3an2ani 1431 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
4229, 41eqbrtrrd 4677 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴)))
4332a1i 11 . . . . . . . . . . 11 (⊤ → 1 ∈ ℝ)
4443rered 13964 . . . . . . . . . 10 (⊤ → (ℜ‘1) = 1)
4544trud 1493 . . . . . . . . 9 (ℜ‘1) = 1
46 oveq1 6657 . . . . . . . . . 10 ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)))
4746eqcomd 2628 . . . . . . . . 9 ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
4845, 47ax-mp 5 . . . . . . . 8 (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))
49 resub 13867 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
5049eqcomd 2628 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5150idiALT 38683 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
521, 3, 51sylancr 695 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5348, 52syl5eq 2668 . . . . . . 7 (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5453adantr 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
5542, 54breqtrd 4679 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴)))
56 argrege0 24357 . . . . . . 7 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
57563coml 1272 . . . . . 6 (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
58573com13 1270 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
594, 55, 14, 58eel12131 38938 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
60 iccleub 12229 . . . 4 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
6124, 25, 59, 60mp3an12i 1428 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
62 pipos 24212 . . . . . 6 0 < π
6318, 62elrpii 11835 . . . . 5 π ∈ ℝ+
64 rphalflt 11860 . . . . 5 (π ∈ ℝ+ → (π / 2) < π)
6563, 64ax-mp 5 . . . 4 (π / 2) < π
6665a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (π / 2) < π)
6717, 22, 23, 61, 66lelttrd 10195 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π)
6817, 67ltned 10173 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  +crp 11832  [,]cicc 12178  cre 13837  cim 13838  abscabs 13974  πcpi 14797  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator