MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem3 Structured version   Visualization version   GIF version

Theorem itg2monolem3 23519
Description: Lemma for itg2mono 23520. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃𝑟𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem3 (𝜑 → (∫1𝑃) ≤ 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
2 itg2mono.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
3 itg2mono.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
4 itg2mono.4 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
5 itg2mono.5 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6 itg2mono.6 . . . . . . . . . 10 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
7 itg2monolem2.7 . . . . . . . . . 10 (𝜑𝑃 ∈ dom ∫1)
8 itg2monolem2.8 . . . . . . . . . 10 (𝜑𝑃𝑟𝐺)
9 itg2monolem2.9 . . . . . . . . . 10 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9itg2monolem2 23518 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
1110adantr 481 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℝ)
1211recnd 10068 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℂ)
137adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑃 ∈ dom ∫1)
14 itg1cl 23452 . . . . . . . . 9 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℝ)
1615recnd 10068 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℂ)
17 simpr 477 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
1817rpred 11872 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ)
1911, 18readdcld 10069 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℝ)
2019recnd 10068 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℂ)
21 0red 10041 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ∈ ℝ)
22 0xr 10086 . . . . . . . . . . . 12 0 ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ*)
24 1nn 11031 . . . . . . . . . . . . 13 1 ∈ ℕ
25 icossicc 12260 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
26 fss 6056 . . . . . . . . . . . . . . 15 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
273, 25, 26sylancl 694 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
2827ralrimiva 2966 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
29 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
3029feq1d 6030 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
3130rspcv 3305 . . . . . . . . . . . . 13 (1 ∈ ℕ → (∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞) → (𝐹‘1):ℝ⟶(0[,]+∞)))
3224, 28, 31mpsyl 68 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
33 itg2cl 23499 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
35 itg2cl 23499 . . . . . . . . . . . . . . . 16 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3627, 35syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
37 eqid 2622 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
3836, 37fmptd 6385 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
39 frn 6053 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ* → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
4038, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
41 supxrcl 12145 . . . . . . . . . . . . 13 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
4240, 41syl 17 . . . . . . . . . . . 12 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
436, 42syl5eqel 2705 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
44 itg2ge0 23502 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
4532, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
4629fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
47 fvex 6201 . . . . . . . . . . . . . . . 16 (∫2‘(𝐹‘1)) ∈ V
4846, 37, 47fvmpt 6282 . . . . . . . . . . . . . . 15 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
4924, 48ax-mp 5 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
50 ffn 6045 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ* → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
5138, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
52 fnfvelrn 6356 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5351, 24, 52sylancl 694 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5449, 53syl5eqelr 2706 . . . . . . . . . . . . 13 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
55 supxrub 12154 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5640, 54, 55syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5756, 6syl6breqr 4695 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
5823, 34, 43, 45, 57xrletrd 11993 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑆)
5958adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ≤ 𝑆)
6011, 17ltaddrpd 11905 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (𝑆 + 𝑡))
6121, 11, 19, 59, 60lelttrd 10195 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 0 < (𝑆 + 𝑡))
6261gt0ne0d 10592 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ≠ 0)
6312, 16, 20, 62div23d 10838 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) = ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)))
6411, 19, 62redivcld 10853 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ∈ ℝ)
6564, 15remulcld 10070 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ∈ ℝ)
66 halfre 11246 . . . . . . . . 9 (1 / 2) ∈ ℝ
67 ifcl 4130 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6864, 66, 67sylancl 694 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6968, 15remulcld 10070 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ∈ ℝ)
70 max2 12018 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
7166, 64, 70sylancr 695 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
727, 14syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∫1𝑃) ∈ ℝ)
7372rexrd 10089 . . . . . . . . . . . . 13 (𝜑 → (∫1𝑃) ∈ ℝ*)
74 xrltnle 10105 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
7543, 73, 74syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
769, 75mpbird 247 . . . . . . . . . . 11 (𝜑𝑆 < (∫1𝑃))
7776adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (∫1𝑃))
7821, 11, 15, 59, 77lelttrd 10195 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < (∫1𝑃))
79 lemul1 10875 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ ((∫1𝑃) ∈ ℝ ∧ 0 < (∫1𝑃))) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
8064, 68, 15, 78, 79syl112anc 1330 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
8171, 80mpbid 222 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
822adantlr 751 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
833adantlr 751 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
844adantlr 751 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
855adantlr 751 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
8666a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ∈ ℝ)
87 halfgt0 11248 . . . . . . . . . . 11 0 < (1 / 2)
8887a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 0 < (1 / 2))
89 max1 12016 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9066, 64, 89sylancr 695 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9121, 86, 68, 88, 90ltletrd 10197 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9220mulid1d 10057 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 + 𝑡) · 1) = (𝑆 + 𝑡))
9360, 92breqtrrd 4681 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < ((𝑆 + 𝑡) · 1))
94 1red 10055 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 1 ∈ ℝ)
95 ltdivmul 10898 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9611, 94, 19, 61, 95syl112anc 1330 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9793, 96mpbird 247 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) < 1)
98 halflt1 11250 . . . . . . . . . 10 (1 / 2) < 1
99 breq1 4656 . . . . . . . . . . 11 ((𝑆 / (𝑆 + 𝑡)) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
100 breq1 4656 . . . . . . . . . . 11 ((1 / 2) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((1 / 2) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10199, 100ifboth 4124 . . . . . . . . . 10 (((𝑆 / (𝑆 + 𝑡)) < 1 ∧ (1 / 2) < 1) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
10297, 98, 101sylancl 694 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
103 1re 10039 . . . . . . . . . . 11 1 ∈ ℝ
104103rexri 10097 . . . . . . . . . 10 1 ∈ ℝ*
105 elioo2 12216 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)))
10622, 104, 105mp2an 708 . . . . . . . . 9 (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10768, 91, 102, 106syl3anbrc 1246 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1))
1088adantr 481 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑃𝑟𝐺)
109 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑃𝑦) = (𝑃𝑥))
110109oveq2d 6666 . . . . . . . . . . 11 (𝑦 = 𝑥 → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) = (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)))
111 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑥))
112110, 111breq12d 4666 . . . . . . . . . 10 (𝑦 = 𝑥 → ((if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)))
113112cbvrabv 3199 . . . . . . . . 9 {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)} = {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)}
114113mpteq2i 4741 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)})
1151, 82, 83, 84, 85, 6, 107, 13, 108, 11, 114itg2monolem1 23517 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ≤ 𝑆)
11665, 69, 11, 81, 115letrd 10194 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ 𝑆)
11763, 116eqbrtrd 4675 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆)
11811, 15remulcld 10070 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ∈ ℝ)
119 ledivmul2 10902 . . . . . 6 (((𝑆 · (∫1𝑃)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
120118, 11, 19, 61, 119syl112anc 1330 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
121117, 120mpbid 222 . . . 4 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))
12268, 15, 91, 78mulgt0d 10192 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 0 < (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
12321, 69, 11, 122, 115ltletrd 10197 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → 0 < 𝑆)
124 lemul2 10876 . . . . 5 (((∫1𝑃) ∈ ℝ ∧ (𝑆 + 𝑡) ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 0 < 𝑆)) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
12515, 19, 11, 123, 124syl112anc 1330 . . . 4 ((𝜑𝑡 ∈ ℝ+) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
126121, 125mpbird 247 . . 3 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ≤ (𝑆 + 𝑡))
127126ralrimiva 2966 . 2 (𝜑 → ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡))
128 alrple 12037 . . 3 (((∫1𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
12972, 10, 128syl2anc 693 . 2 (𝜑 → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
130127, 129mpbird 247 1 (𝜑 → (∫1𝑃) ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑟 cofr 6896  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  +crp 11832  (,)cioo 12175  [,)cico 12177  [,]cicc 12178  MblFncmbf 23383  1citg1 23384  2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390
This theorem is referenced by:  itg2mono  23520
  Copyright terms: Public domain W3C validator