| Step | Hyp | Ref
| Expression |
| 1 | | lgseisen.2 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
| 2 | 1 | eldifad 3586 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℙ) |
| 3 | | prmz 15389 |
. . . 4
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 5 | | lgseisen.1 |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 6 | | lgsval3 25040 |
. . 3
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑄
/L 𝑃) =
((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) |
| 7 | 4, 5, 6 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) |
| 8 | | prmnn 15388 |
. . . . . . . . 9
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℕ) |
| 9 | 2, 8 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 10 | | oddprm 15515 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) |
| 11 | 5, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) |
| 12 | 11 | nnnn0d 11351 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) |
| 13 | 9, 12 | nnexpcld 13030 |
. . . . . . 7
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℕ) |
| 14 | 13 | nnred 11035 |
. . . . . 6
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℝ) |
| 15 | | neg1rr 11125 |
. . . . . . . 8
⊢ -1 ∈
ℝ |
| 16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → -1 ∈
ℝ) |
| 17 | | neg1ne0 11126 |
. . . . . . . 8
⊢ -1 ≠
0 |
| 18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → -1 ≠
0) |
| 19 | | fzfid 12772 |
. . . . . . . 8
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) |
| 20 | 9 | nnred 11035 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 21 | 5 | eldifad 3586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 22 | | prmnn 15388 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 24 | 20, 23 | nndivred 11069 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 / 𝑃) ∈ ℝ) |
| 25 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ) |
| 26 | | 2re 11090 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 27 | | elfznn 12370 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) |
| 28 | 27 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ) |
| 29 | 28 | nnred 11035 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ) |
| 30 | | remulcl 10021 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝑥
∈ ℝ) → (2 · 𝑥) ∈ ℝ) |
| 31 | 26, 29, 30 | sylancr 695 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℝ) |
| 32 | 25, 31 | remulcld 10070 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ) |
| 33 | 32 | flcld 12599 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℤ) |
| 34 | 19, 33 | fsumzcl 14466 |
. . . . . . 7
⊢ (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) |
| 35 | 16, 18, 34 | reexpclzd 13034 |
. . . . . 6
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ) |
| 36 | | 1re 10039 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 37 | 36 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 38 | 23 | nnrpd 11870 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
| 39 | | lgseisen.3 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 40 | | eqid 2622 |
. . . . . . 7
⊢ ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃) |
| 41 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
((((-1↑((𝑄 · (2
· 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
((((-1↑((𝑄 · (2
· 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) |
| 42 | | eqid 2622 |
. . . . . . 7
⊢ ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃) |
| 43 | | eqid 2622 |
. . . . . . 7
⊢
(ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃) |
| 44 | | eqid 2622 |
. . . . . . 7
⊢
(mulGrp‘(ℤ/nℤ‘𝑃)) =
(mulGrp‘(ℤ/nℤ‘𝑃)) |
| 45 | | eqid 2622 |
. . . . . . 7
⊢
(ℤRHom‘(ℤ/nℤ‘𝑃)) =
(ℤRHom‘(ℤ/nℤ‘𝑃)) |
| 46 | 5, 1, 39, 40, 41, 42, 43, 44, 45 | lgseisenlem4 25103 |
. . . . . 6
⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) |
| 47 | | modadd1 12707 |
. . . . . 6
⊢ ((((𝑄↑((𝑃 − 1) / 2)) ∈ ℝ ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℝ) ∧
(1 ∈ ℝ ∧ 𝑃
∈ ℝ+) ∧ ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃)) |
| 48 | 14, 35, 37, 38, 46, 47 | syl221anc 1337 |
. . . . 5
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃)) |
| 49 | | peano2re 10209 |
. . . . . . 7
⊢
((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℝ →
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) ∈
ℝ) |
| 50 | 35, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ) |
| 51 | | df-neg 10269 |
. . . . . . . 8
⊢ -1 = (0
− 1) |
| 52 | | neg1cn 11124 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
ℂ |
| 53 | 52 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -1 ∈
ℂ) |
| 54 | | absexpz 14045 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℂ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 55 | 53, 18, 34, 54 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 56 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
| 57 | 56 | absnegi 14139 |
. . . . . . . . . . . . . . 15
⊢
(abs‘-1) = (abs‘1) |
| 58 | | abs1 14037 |
. . . . . . . . . . . . . . 15
⊢
(abs‘1) = 1 |
| 59 | 57, 58 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢
(abs‘-1) = 1 |
| 60 | 59 | oveq1i 6660 |
. . . . . . . . . . . . 13
⊢
((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
| 61 | | 1exp 12889 |
. . . . . . . . . . . . . 14
⊢
(Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))) ∈ ℤ →
(1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) = 1) |
| 62 | 34, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1) |
| 63 | 60, 62 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1) |
| 64 | 55, 63 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1) |
| 65 | | 1le1 10655 |
. . . . . . . . . . 11
⊢ 1 ≤
1 |
| 66 | 64, 65 | syl6eqbr 4692 |
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1) |
| 67 | | absle 14055 |
. . . . . . . . . . 11
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℝ ∧
1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1))) |
| 68 | 35, 36, 67 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 →
((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1))) |
| 69 | 66, 68 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1)) |
| 70 | 69 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → -1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))) |
| 71 | 51, 70 | syl5eqbrr 4689 |
. . . . . . 7
⊢ (𝜑 → (0 − 1) ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))) |
| 72 | | 0red 10041 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 73 | 72, 37, 35 | lesubaddd 10624 |
. . . . . . 7
⊢ (𝜑 → ((0 − 1) ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ↔ 0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) +
1))) |
| 74 | 71, 73 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → 0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) +
1)) |
| 75 | 23 | nnred 11035 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 76 | | peano2rem 10348 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈
ℝ) |
| 77 | 75, 76 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
| 78 | 69 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1) |
| 79 | | df-2 11079 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
| 80 | | eldifsni 4320 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
| 81 | 5, 80 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ≠ 2) |
| 82 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ) |
| 83 | | prmuz2 15408 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
| 84 | | eluzle 11700 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘2) → 2 ≤ 𝑃) |
| 85 | 21, 83, 84 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≤ 𝑃) |
| 86 | 82, 75, 85 | leltned 10190 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 < 𝑃 ↔ 𝑃 ≠ 2)) |
| 87 | 81, 86 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → 2 < 𝑃) |
| 88 | 79, 87 | syl5eqbrr 4689 |
. . . . . . . . 9
⊢ (𝜑 → (1 + 1) < 𝑃) |
| 89 | 37, 37, 75 | ltaddsubd 10627 |
. . . . . . . . 9
⊢ (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1))) |
| 90 | 88, 89 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → 1 < (𝑃 − 1)) |
| 91 | 35, 37, 77, 78, 90 | lelttrd 10195 |
. . . . . . 7
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)) |
| 92 | 35, 37, 75 | ltaddsubd 10627 |
. . . . . . 7
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))) |
| 93 | 91, 92 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃) |
| 94 | | modid 12695 |
. . . . . 6
⊢
(((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+)
∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) |
| 95 | 50, 38, 74, 93, 94 | syl22anc 1327 |
. . . . 5
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) |
| 96 | 48, 95 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) |
| 97 | 96 | oveq1d 6665 |
. . 3
⊢ (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1)) |
| 98 | 35 | recnd 10068 |
. . . 4
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ) |
| 99 | | pncan 10287 |
. . . 4
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℂ ∧
1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 100 | 98, 56, 99 | sylancl 694 |
. . 3
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 101 | 97, 100 | eqtrd 2656 |
. 2
⊢ (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 102 | 7, 101 | eqtrd 2656 |
1
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |