MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Visualization version   Unicode version

Theorem abelthlem2 24186
Description: Lemma for abelth 24195. The peculiar region  S, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing  1. Indeed, except for  1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
Assertion
Ref Expression
abelthlem2  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
Distinct variable groups:    z, M    z, A
Allowed substitution hints:    ph( z)    S( z)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2  |-  ( ph  ->  M  e.  RR )
2 abelth.4 . 2  |-  ( ph  ->  0  <_  M )
3 1cnd 10056 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
1  e.  CC )
4 0le0 11110 . . . . 5  |-  0  <_  0
5 simpl 473 . . . . . . 7  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  M  e.  RR )
65recnd 10068 . . . . . 6  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  M  e.  CC )
76mul01d 10235 . . . . 5  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( M  x.  0 )  =  0 )
84, 7syl5breqr 4691 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
0  <_  ( M  x.  0 ) )
9 oveq2 6658 . . . . . . . 8  |-  ( z  =  1  ->  (
1  -  z )  =  ( 1  -  1 ) )
10 1m1e0 11089 . . . . . . . 8  |-  ( 1  -  1 )  =  0
119, 10syl6eq 2672 . . . . . . 7  |-  ( z  =  1  ->  (
1  -  z )  =  0 )
1211abs00bd 14031 . . . . . 6  |-  ( z  =  1  ->  ( abs `  ( 1  -  z ) )  =  0 )
13 fveq2 6191 . . . . . . . . . 10  |-  ( z  =  1  ->  ( abs `  z )  =  ( abs `  1
) )
14 abs1 14037 . . . . . . . . . 10  |-  ( abs `  1 )  =  1
1513, 14syl6eq 2672 . . . . . . . . 9  |-  ( z  =  1  ->  ( abs `  z )  =  1 )
1615oveq2d 6666 . . . . . . . 8  |-  ( z  =  1  ->  (
1  -  ( abs `  z ) )  =  ( 1  -  1 ) )
1716, 10syl6eq 2672 . . . . . . 7  |-  ( z  =  1  ->  (
1  -  ( abs `  z ) )  =  0 )
1817oveq2d 6666 . . . . . 6  |-  ( z  =  1  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( M  x.  0 ) )
1912, 18breq12d 4666 . . . . 5  |-  ( z  =  1  ->  (
( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  0  <_  ( M  x.  0 ) ) )
20 abelth.5 . . . . 5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
2119, 20elrab2 3366 . . . 4  |-  ( 1  e.  S  <->  ( 1  e.  CC  /\  0  <_  ( M  x.  0 ) ) )
223, 8, 21sylanbrc 698 . . 3  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
1  e.  S )
23 velsn 4193 . . . . . . . . . 10  |-  ( z  e.  { 1 }  <-> 
z  =  1 )
2423necon3bbii 2841 . . . . . . . . 9  |-  ( -.  z  e.  { 1 }  <->  z  =/=  1
)
25 simprll 802 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  e.  CC )
26 0cn 10032 . . . . . . . . . . . . . . 15  |-  0  e.  CC
27 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2827cnmetdval 22574 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  CC  /\  0  e.  CC )  ->  ( z ( abs 
o.  -  ) 0 )  =  ( abs `  ( z  -  0 ) ) )
2925, 26, 28sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  =  ( abs `  (
z  -  0 ) ) )
3025subid1d 10381 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z  -  0 )  =  z )
3130fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( z  - 
0 ) )  =  ( abs `  z
) )
3229, 31eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  =  ( abs `  z
) )
33 simprlr 803 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( 1  -  z ) )  <_ 
( M  x.  (
1  -  ( abs `  z ) ) ) )
34 ax-1cn 9994 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
35 subcl 10280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( 1  -  z
)  e.  CC )
3634, 25, 35sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  z )  e.  CC )
3736abscld 14175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( 1  -  z ) )  e.  RR )
38 simpll 790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  e.  RR )
39 1re 10039 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
4025abscld 14175 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  e.  RR )
41 resubcl 10345 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( abs `  z )  e.  RR )  -> 
( 1  -  ( abs `  z ) )  e.  RR )
4239, 40, 41sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  ( abs `  z ) )  e.  RR )
4338, 42remulcld 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  e.  RR )
4437, 43lenltd 10183 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  -.  ( M  x.  ( 1  -  ( abs `  z ) ) )  <  ( abs `  ( 1  -  z
) ) ) )
4533, 44mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  -.  ( M  x.  (
1  -  ( abs `  z ) ) )  <  ( abs `  (
1  -  z ) ) )
467adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  0 )  =  0 )
47 simprr 796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  =/=  1 )
4847necomd 2849 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  =/=  z )
49 subeq0 10307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =  0  <->  1  =  z ) )
5049necon3bid 2838 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
5134, 25, 50sylancr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( 1  -  z
)  =/=  0  <->  1  =/=  z ) )
5248, 51mpbird 247 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  z )  =/=  0 )
53 absgt0 14064 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  -  z )  e.  CC  ->  (
( 1  -  z
)  =/=  0  <->  0  <  ( abs `  (
1  -  z ) ) ) )
5436, 53syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( 1  -  z
)  =/=  0  <->  0  <  ( abs `  (
1  -  z ) ) ) )
5552, 54mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <  ( abs `  (
1  -  z ) ) )
5646, 55eqbrtrd 4675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  0 )  <  ( abs `  (
1  -  z ) ) )
57 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  =  ( abs `  z
)  ->  ( 1  -  1 )  =  ( 1  -  ( abs `  z ) ) )
5810, 57syl5eqr 2670 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( abs `  z
)  ->  0  =  ( 1  -  ( abs `  z ) ) )
5958oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( 1  =  ( abs `  z
)  ->  ( M  x.  0 )  =  ( M  x.  ( 1  -  ( abs `  z
) ) ) )
6059breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  ( abs `  z
)  ->  ( ( M  x.  0 )  <  ( abs `  (
1  -  z ) )  <->  ( M  x.  ( 1  -  ( abs `  z ) ) )  <  ( abs `  ( 1  -  z
) ) ) )
6156, 60syl5ibcom 235 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  =  ( abs `  z )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  < 
( abs `  (
1  -  z ) ) ) )
6261necon3bd 2808 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( -.  ( M  x.  (
1  -  ( abs `  z ) ) )  <  ( abs `  (
1  -  z ) )  ->  1  =/=  ( abs `  z ) ) )
6345, 62mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  =/=  ( abs `  z
) )
64 1red 10055 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  e.  RR )
65 resubcl 10345 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  z
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  z
)  -  1 )  e.  RR )
6640, 39, 65sylancl 694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  e.  RR )
6714oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( abs `  z )  -  ( abs `  1
) )  =  ( ( abs `  z
)  -  1 )
68 abs2dif 14072 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  CC  /\  1  e.  CC )  ->  ( ( abs `  z
)  -  ( abs `  1 ) )  <_  ( abs `  (
z  -  1 ) ) )
6925, 34, 68sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  ( abs `  1 ) )  <_  ( abs `  (
z  -  1 ) ) )
7067, 69syl5eqbrr 4689 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( abs `  (
z  -  1 ) ) )
71 abssub 14066 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  CC  /\  1  e.  CC )  ->  ( abs `  (
z  -  1 ) )  =  ( abs `  ( 1  -  z
) ) )
7225, 34, 71sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( z  - 
1 ) )  =  ( abs `  (
1  -  z ) ) )
7370, 72breqtrd 4679 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( abs `  (
1  -  z ) ) )
7466, 37, 43, 73, 33letrd 10194 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )
7540, 64, 43lesubaddd 10624 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( ( abs `  z
)  -  1 )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  ( abs `  z
)  <_  ( ( M  x.  ( 1  -  ( abs `  z
) ) )  +  1 ) ) )
7674, 75mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
( ( M  x.  ( 1  -  ( abs `  z ) ) )  +  1 ) )
776adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  e.  CC )
78 1cnd 10056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  e.  CC )
7938, 40remulcld 10070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( abs `  z ) )  e.  RR )
8079recnd 10068 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( abs `  z ) )  e.  CC )
8177, 78, 80addsubd 10413 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( ( M  -  ( M  x.  ( abs `  z ) ) )  +  1 ) )
8240recnd 10068 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  e.  CC )
8377, 78, 82subdid 10486 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( ( M  x.  1 )  -  ( M  x.  ( abs `  z ) ) ) )
8477mulid1d 10057 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  1 )  =  M )
8584oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( M  -  ( M  x.  ( abs `  z ) ) ) )
8683, 85eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( M  -  ( M  x.  ( abs `  z ) ) ) )
8786oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  (
1  -  ( abs `  z ) ) )  +  1 )  =  ( ( M  -  ( M  x.  ( abs `  z ) ) )  +  1 ) )
8881, 87eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( ( M  x.  ( 1  -  ( abs `  z ) ) )  +  1 ) )
8976, 88breqtrrd 4681 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
( ( M  + 
1 )  -  ( M  x.  ( abs `  z ) ) ) )
90 peano2re 10209 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
9138, 90syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  +  1 )  e.  RR )
9279, 40, 91leaddsub2d 10629 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) )  <_ 
( M  +  1 )  <->  ( abs `  z
)  <_  ( ( M  +  1 )  -  ( M  x.  ( abs `  z ) ) ) ) )
9389, 92mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  ( abs `  z ) )  +  ( abs `  z
) )  <_  ( M  +  1 ) )
9477, 78, 82adddird 10065 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( 1  x.  ( abs `  z
) ) ) )
9582mulid2d 10058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  x.  ( abs `  z ) )  =  ( abs `  z
) )
9695oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  ( abs `  z ) )  +  ( 1  x.  ( abs `  z
) ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) ) )
9794, 96eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) ) )
9891recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  +  1 )  e.  CC )
9998mulid1d 10057 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  1 )  =  ( M  + 
1 ) )
10093, 97, 993brtr4d 4685 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  <_ 
( ( M  + 
1 )  x.  1 ) )
101 0red 10041 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  e.  RR )
102 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <_  M )
10338ltp1d 10954 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  <  ( M  +  1 ) )
104101, 38, 91, 102, 103lelttrd 10195 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <  ( M  +  1 ) )
105 lemul2 10876 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  z
)  e.  RR  /\  1  e.  RR  /\  (
( M  +  1 )  e.  RR  /\  0  <  ( M  + 
1 ) ) )  ->  ( ( abs `  z )  <_  1  <->  ( ( M  +  1 )  x.  ( abs `  z ) )  <_ 
( ( M  + 
1 )  x.  1 ) ) )
10640, 64, 91, 104, 105syl112anc 1330 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  <_  1  <->  ( ( M  +  1 )  x.  ( abs `  z
) )  <_  (
( M  +  1 )  x.  1 ) ) )
107100, 106mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
1 )
10840, 64, 107leltned 10190 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  <  1  <->  1  =/=  ( abs `  z ) ) )
10963, 108mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <  1 )
11032, 109eqbrtrd 4675 . . . . . . . . . . . 12  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  <  1 )
111 cnxmet 22576 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
112 1rp 11836 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
113 rpxr 11840 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
114112, 113ax-mp 5 . . . . . . . . . . . . . 14  |-  1  e.  RR*
115 elbl3 22197 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  z  e.  CC ) )  -> 
( z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
116111, 114, 115mpanl12 718 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  z  e.  CC )  ->  ( z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
11726, 25, 116sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
118110, 117mpbird 247 . . . . . . . . . . 11  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
119118expr 643 . . . . . . . . . 10  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) ) )  -> 
( z  =/=  1  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1201193impb 1260 . . . . . . . . 9  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  (
z  =/=  1  -> 
z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
12124, 120syl5bi 232 . . . . . . . 8  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  ( -.  z  e.  { 1 }  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
122121orrd 393 . . . . . . 7  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  (
z  e.  { 1 }  \/  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
123 elun 3753 . . . . . . 7  |-  ( z  e.  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( z  e.  { 1 }  \/  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
124122, 123sylibr 224 . . . . . 6  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  z  e.  ( { 1 }  u.  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) ) )
125124rabssdv 3682 . . . . 5  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }  C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
12620, 125syl5eqss 3649 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  S  C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
127 ssundif 4052 . . . 4  |-  ( S 
C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( S  \  { 1 } ) 
C_  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) )
128126, 127sylib 208 . . 3  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
12922, 128jca 554 . 2  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1301, 2, 129syl2anc 693 1  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NN0cn0 11292   RR+crp 11832    seqcseq 12801   abscabs 13974    ~~> cli 14215   *Metcxmt 19731   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741
This theorem is referenced by:  abelthlem3  24187  abelthlem6  24190  abelthlem7  24192  abelthlem8  24193  abelthlem9  24194  abelth  24195
  Copyright terms: Public domain W3C validator