MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsres Structured version   Visualization version   Unicode version

Theorem bitsres 15195
Description: Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsres  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  A
)  i^i  ( ZZ>= `  N ) )  =  (bits `  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) ) )

Proof of Theorem bitsres
StepHypRef Expression
1 simpl 473 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  ZZ )
2 2nn 11185 . . . . . . . 8  |-  2  e.  NN
32a1i 11 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
2  e.  NN )
4 simpr 477 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  NN0 )
53, 4nnexpcld 13030 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  NN )
61, 5zmodcld 12691 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  mod  (
2 ^ N ) )  e.  NN0 )
76nn0zd 11480 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  mod  (
2 ^ N ) )  e.  ZZ )
87znegcld 11484 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  -u ( A  mod  (
2 ^ N ) )  e.  ZZ )
9 sadadd 15189 . . 3  |-  ( (
-u ( A  mod  ( 2 ^ N
) )  e.  ZZ  /\  A  e.  ZZ )  ->  ( (bits `  -u ( A  mod  (
2 ^ N ) ) ) sadd  (bits `  A ) )  =  (bits `  ( -u ( A  mod  ( 2 ^ N ) )  +  A ) ) )
108, 1, 9syl2anc 693 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  -u ( A  mod  ( 2 ^ N ) ) ) sadd  (bits `  A )
)  =  (bits `  ( -u ( A  mod  ( 2 ^ N
) )  +  A
) ) )
11 sadadd 15189 . . . . . 6  |-  ( (
-u ( A  mod  ( 2 ^ N
) )  e.  ZZ  /\  ( A  mod  (
2 ^ N ) )  e.  ZZ )  ->  ( (bits `  -u ( A  mod  (
2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N ) ) ) )  =  (bits `  ( -u ( A  mod  ( 2 ^ N ) )  +  ( A  mod  (
2 ^ N ) ) ) ) )
128, 7, 11syl2anc 693 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  -u ( A  mod  ( 2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N
) ) ) )  =  (bits `  ( -u ( A  mod  (
2 ^ N ) )  +  ( A  mod  ( 2 ^ N ) ) ) ) )
138zcnd 11483 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  -u ( A  mod  (
2 ^ N ) )  e.  CC )
147zcnd 11483 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  mod  (
2 ^ N ) )  e.  CC )
1513, 14addcomd 10238 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( -u ( A  mod  ( 2 ^ N
) )  +  ( A  mod  ( 2 ^ N ) ) )  =  ( ( A  mod  ( 2 ^ N ) )  +  -u ( A  mod  ( 2 ^ N
) ) ) )
1614negidd 10382 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( A  mod  ( 2 ^ N
) )  +  -u ( A  mod  ( 2 ^ N ) ) )  =  0 )
1715, 16eqtrd 2656 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( -u ( A  mod  ( 2 ^ N
) )  +  ( A  mod  ( 2 ^ N ) ) )  =  0 )
1817fveq2d 6195 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  ( -u ( A  mod  ( 2 ^ N ) )  +  ( A  mod  (
2 ^ N ) ) ) )  =  (bits `  0 )
)
19 0bits 15161 . . . . . 6  |-  (bits ` 
0 )  =  (/)
2018, 19syl6eq 2672 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  ( -u ( A  mod  ( 2 ^ N ) )  +  ( A  mod  (
2 ^ N ) ) ) )  =  (/) )
2112, 20eqtrd 2656 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  -u ( A  mod  ( 2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N
) ) ) )  =  (/) )
2221oveq1d 6665 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  -u ( A  mod  (
2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N ) ) ) ) sadd  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  ( (/) sadd  ( (bits `  A )  i^i  ( ZZ>= `  N )
) ) )
23 bitsss 15148 . . . . 5  |-  (bits `  -u ( A  mod  (
2 ^ N ) ) )  C_  NN0
24 bitsss 15148 . . . . 5  |-  (bits `  ( A  mod  ( 2 ^ N ) ) )  C_  NN0
25 inss1 3833 . . . . . 6  |-  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) 
C_  (bits `  A
)
26 bitsss 15148 . . . . . . 7  |-  (bits `  A )  C_  NN0
2726a1i 11 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  A )  C_ 
NN0 )
2825, 27syl5ss 3614 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  A
)  i^i  ( ZZ>= `  N ) )  C_  NN0 )
29 sadass 15193 . . . . 5  |-  ( ( (bits `  -u ( A  mod  ( 2 ^ N ) ) ) 
C_  NN0  /\  (bits `  ( A  mod  (
2 ^ N ) ) )  C_  NN0  /\  ( (bits `  A )  i^i  ( ZZ>= `  N )
)  C_  NN0 )  -> 
( ( (bits `  -u ( A  mod  (
2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N ) ) ) ) sadd  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  ( (bits `  -u ( A  mod  ( 2 ^ N
) ) ) sadd  (
(bits `  ( A  mod  ( 2 ^ N
) ) ) sadd  (
(bits `  A )  i^i  ( ZZ>= `  N )
) ) ) )
3023, 24, 28, 29mp3an12i 1428 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  -u ( A  mod  (
2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N ) ) ) ) sadd  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  ( (bits `  -u ( A  mod  ( 2 ^ N
) ) ) sadd  (
(bits `  ( A  mod  ( 2 ^ N
) ) ) sadd  (
(bits `  A )  i^i  ( ZZ>= `  N )
) ) ) )
31 bitsmod 15158 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  ( A  mod  ( 2 ^ N
) ) )  =  ( (bits `  A
)  i^i  ( 0..^ N ) ) )
3231oveq1d 6665 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  ( A  mod  ( 2 ^ N ) ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) )  =  ( ( (bits `  A )  i^i  (
0..^ N ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) ) )
33 inss1 3833 . . . . . . . . . 10  |-  ( (bits `  A )  i^i  (
0..^ N ) ) 
C_  (bits `  A
)
3433, 27syl5ss 3614 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  A
)  i^i  ( 0..^ N ) )  C_  NN0 )
35 fzouzdisj 12504 . . . . . . . . . . . 12  |-  ( ( 0..^ N )  i^i  ( ZZ>= `  N )
)  =  (/)
3635ineq2i 3811 . . . . . . . . . . 11  |-  ( (bits `  A )  i^i  (
( 0..^ N )  i^i  ( ZZ>= `  N
) ) )  =  ( (bits `  A
)  i^i  (/) )
37 inindi 3830 . . . . . . . . . . 11  |-  ( (bits `  A )  i^i  (
( 0..^ N )  i^i  ( ZZ>= `  N
) ) )  =  ( ( (bits `  A )  i^i  (
0..^ N ) )  i^i  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )
38 in0 3968 . . . . . . . . . . 11  |-  ( (bits `  A )  i^i  (/) )  =  (/)
3936, 37, 383eqtr3i 2652 . . . . . . . . . 10  |-  ( ( (bits `  A )  i^i  ( 0..^ N ) )  i^i  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  (/)
4039a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  A )  i^i  (
0..^ N ) )  i^i  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  (/) )
4134, 28, 40saddisj 15187 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  A )  i^i  (
0..^ N ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) )  =  ( ( (bits `  A )  i^i  (
0..^ N ) )  u.  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) ) )
42 indi 3873 . . . . . . . 8  |-  ( (bits `  A )  i^i  (
( 0..^ N )  u.  ( ZZ>= `  N
) ) )  =  ( ( (bits `  A )  i^i  (
0..^ N ) )  u.  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )
4341, 42syl6eqr 2674 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  A )  i^i  (
0..^ N ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) )  =  ( (bits `  A )  i^i  (
( 0..^ N )  u.  ( ZZ>= `  N
) ) ) )
44 nn0uz 11722 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
454, 44syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= ` 
0 ) )
46 fzouzsplit 12503 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0..^ N )  u.  ( ZZ>= `  N
) ) )
4745, 46syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ZZ>= `  0 )  =  ( ( 0..^ N )  u.  ( ZZ>=
`  N ) ) )
4844, 47syl5eq 2668 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  NN0  =  ( ( 0..^ N )  u.  ( ZZ>=
`  N ) ) )
4926, 48syl5sseq 3653 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  A )  C_  ( ( 0..^ N )  u.  ( ZZ>= `  N ) ) )
50 df-ss 3588 . . . . . . . 8  |-  ( (bits `  A )  C_  (
( 0..^ N )  u.  ( ZZ>= `  N
) )  <->  ( (bits `  A )  i^i  (
( 0..^ N )  u.  ( ZZ>= `  N
) ) )  =  (bits `  A )
)
5149, 50sylib 208 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  A
)  i^i  ( (
0..^ N )  u.  ( ZZ>= `  N )
) )  =  (bits `  A ) )
5243, 51eqtrd 2656 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  A )  i^i  (
0..^ N ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) )  =  (bits `  A
) )
5332, 52eqtrd 2656 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  ( A  mod  ( 2 ^ N ) ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) )  =  (bits `  A
) )
5453oveq2d 6666 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  -u ( A  mod  ( 2 ^ N ) ) ) sadd  ( (bits `  ( A  mod  ( 2 ^ N ) ) ) sadd  ( (bits `  A
)  i^i  ( ZZ>= `  N ) ) ) )  =  ( (bits `  -u ( A  mod  ( 2 ^ N
) ) ) sadd  (bits `  A ) ) )
5530, 54eqtrd 2656 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  -u ( A  mod  (
2 ^ N ) ) ) sadd  (bits `  ( A  mod  ( 2 ^ N ) ) ) ) sadd  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  ( (bits `  -u ( A  mod  ( 2 ^ N
) ) ) sadd  (bits `  A ) ) )
56 sadid2 15191 . . . 4  |-  ( ( (bits `  A )  i^i  ( ZZ>= `  N )
)  C_  NN0  ->  ( (/) sadd  ( (bits `  A )  i^i  ( ZZ>= `  N )
) )  =  ( (bits `  A )  i^i  ( ZZ>= `  N )
) )
5728, 56syl 17 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (/) sadd  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )  =  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )
5822, 55, 573eqtr3d 2664 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  -u ( A  mod  ( 2 ^ N ) ) ) sadd  (bits `  A )
)  =  ( (bits `  A )  i^i  ( ZZ>=
`  N ) ) )
591zcnd 11483 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  CC )
6013, 59addcomd 10238 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( -u ( A  mod  ( 2 ^ N
) )  +  A
)  =  ( A  +  -u ( A  mod  ( 2 ^ N
) ) ) )
6159, 14negsubd 10398 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  +  -u ( A  mod  ( 2 ^ N ) ) )  =  ( A  -  ( A  mod  ( 2 ^ N
) ) ) )
6259, 14subcld 10392 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  -  ( A  mod  ( 2 ^ N ) ) )  e.  CC )
635nncnd 11036 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  CC )
645nnne0d 11065 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  =/=  0 )
6562, 63, 64divcan1d 10802 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( ( A  -  ( A  mod  ( 2 ^ N
) ) )  / 
( 2 ^ N
) )  x.  (
2 ^ N ) )  =  ( A  -  ( A  mod  ( 2 ^ N
) ) ) )
661zred 11482 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  RR )
675nnrpd 11870 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  RR+ )
68 moddiffl 12681 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  ->  ( ( A  -  ( A  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  =  ( |_ `  ( A  /  (
2 ^ N ) ) ) )
6966, 67, 68syl2anc 693 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( A  -  ( A  mod  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  =  ( |_ `  ( A  /  (
2 ^ N ) ) ) )
7069oveq1d 6665 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( ( A  -  ( A  mod  ( 2 ^ N
) ) )  / 
( 2 ^ N
) )  x.  (
2 ^ N ) )  =  ( ( |_ `  ( A  /  ( 2 ^ N ) ) )  x.  ( 2 ^ N ) ) )
7161, 65, 703eqtr2d 2662 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  +  -u ( A  mod  ( 2 ^ N ) ) )  =  ( ( |_ `  ( A  /  ( 2 ^ N ) ) )  x.  ( 2 ^ N ) ) )
7260, 71eqtrd 2656 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( -u ( A  mod  ( 2 ^ N
) )  +  A
)  =  ( ( |_ `  ( A  /  ( 2 ^ N ) ) )  x.  ( 2 ^ N ) ) )
7372fveq2d 6195 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
(bits `  ( -u ( A  mod  ( 2 ^ N ) )  +  A ) )  =  (bits `  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) ) )
7410, 58, 733eqtr3d 2664 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  A
)  i^i  ( ZZ>= `  N ) )  =  (bits `  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832  ..^cfzo 12465   |_cfl 12591    mod cmo 12668   ^cexp 12860  bitscbits 15141   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  bitsuz  15196
  Copyright terms: Public domain W3C validator