MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsuz Structured version   Visualization version   Unicode version

Theorem bitsuz 15196
Description: The bits of a number are all at least  N iff the number is divisible by  2 ^ N. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
bitsuz  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( 2 ^ N )  ||  A  <->  (bits `  A )  C_  ( ZZ>=
`  N ) ) )

Proof of Theorem bitsuz
StepHypRef Expression
1 bitsres 15195 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  A
)  i^i  ( ZZ>= `  N ) )  =  (bits `  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) ) )
21eqeq1d 2624 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( (bits `  A )  i^i  ( ZZ>=
`  N ) )  =  (bits `  A
)  <->  (bits `  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) )  =  (bits `  A )
) )
3 simpl 473 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  ZZ )
43zred 11482 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  RR )
5 2nn 11185 . . . . . . . . 9  |-  2  e.  NN
65a1i 11 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
2  e.  NN )
7 simpr 477 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  NN0 )
86, 7nnexpcld 13030 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  NN )
94, 8nndivred 11069 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A  /  (
2 ^ N ) )  e.  RR )
109flcld 12599 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( |_ `  ( A  /  ( 2 ^ N ) ) )  e.  ZZ )
118nnzd 11481 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  ZZ )
1210, 11zmulcld 11488 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( |_ `  ( A  /  (
2 ^ N ) ) )  x.  (
2 ^ N ) )  e.  ZZ )
13 bitsf1 15168 . . . . 5  |- bits : ZZ -1-1-> ~P
NN0
14 f1fveq 6519 . . . . 5  |-  ( (bits
: ZZ -1-1-> ~P NN0  /\  ( ( ( |_
`  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  e.  ZZ  /\  A  e.  ZZ ) )  ->  ( (bits `  ( ( |_ `  ( A  /  (
2 ^ N ) ) )  x.  (
2 ^ N ) ) )  =  (bits `  A )  <->  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  =  A ) )
1513, 14mpan 706 . . . 4  |-  ( ( ( ( |_ `  ( A  /  (
2 ^ N ) ) )  x.  (
2 ^ N ) )  e.  ZZ  /\  A  e.  ZZ )  ->  ( (bits `  (
( |_ `  ( A  /  ( 2 ^ N ) ) )  x.  ( 2 ^ N ) ) )  =  (bits `  A
)  <->  ( ( |_
`  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  =  A ) )
1612, 3, 15syl2anc 693 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( (bits `  (
( |_ `  ( A  /  ( 2 ^ N ) ) )  x.  ( 2 ^ N ) ) )  =  (bits `  A
)  <->  ( ( |_
`  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  =  A ) )
17 dvdsmul2 15004 . . . . . 6  |-  ( ( ( |_ `  ( A  /  ( 2 ^ N ) ) )  e.  ZZ  /\  (
2 ^ N )  e.  ZZ )  -> 
( 2 ^ N
)  ||  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) )
1810, 11, 17syl2anc 693 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  ||  ( ( |_ `  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) ) )
19 breq2 4657 . . . . 5  |-  ( ( ( |_ `  ( A  /  ( 2 ^ N ) ) )  x.  ( 2 ^ N ) )  =  A  ->  ( (
2 ^ N ) 
||  ( ( |_
`  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  <->  ( 2 ^ N )  ||  A ) )
2018, 19syl5ibcom 235 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  =  A  ->  ( 2 ^ N )  ||  A
) )
218nnne0d 11065 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  =/=  0 )
22 dvdsval2 14986 . . . . . . . . . 10  |-  ( ( ( 2 ^ N
)  e.  ZZ  /\  ( 2 ^ N
)  =/=  0  /\  A  e.  ZZ )  ->  ( ( 2 ^ N )  ||  A 
<->  ( A  /  (
2 ^ N ) )  e.  ZZ ) )
2311, 21, 3, 22syl3anc 1326 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( 2 ^ N )  ||  A  <->  ( A  /  ( 2 ^ N ) )  e.  ZZ ) )
2423biimpa 501 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( A  /  (
2 ^ N ) )  e.  ZZ )
25 flid 12609 . . . . . . . 8  |-  ( ( A  /  ( 2 ^ N ) )  e.  ZZ  ->  ( |_ `  ( A  / 
( 2 ^ N
) ) )  =  ( A  /  (
2 ^ N ) ) )
2624, 25syl 17 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( |_ `  ( A  /  ( 2 ^ N ) ) )  =  ( A  / 
( 2 ^ N
) ) )
2726oveq1d 6665 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( ( |_ `  ( A  /  (
2 ^ N ) ) )  x.  (
2 ^ N ) )  =  ( ( A  /  ( 2 ^ N ) )  x.  ( 2 ^ N ) ) )
283zcnd 11483 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  CC )
2928adantr 481 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  A  e.  CC )
308nncnd 11036 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  CC )
3130adantr 481 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( 2 ^ N
)  e.  CC )
32 2cnd 11093 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  2  e.  CC )
33 2ne0 11113 . . . . . . . . 9  |-  2  =/=  0
3433a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  2  =/=  0 )
357nn0zd 11480 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  ZZ )
3635adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  N  e.  ZZ )
3732, 34, 36expne0d 13014 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( 2 ^ N
)  =/=  0 )
3829, 31, 37divcan1d 10802 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( ( A  / 
( 2 ^ N
) )  x.  (
2 ^ N ) )  =  A )
3927, 38eqtrd 2656 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( 2 ^ N
)  ||  A )  ->  ( ( |_ `  ( A  /  (
2 ^ N ) ) )  x.  (
2 ^ N ) )  =  A )
4039ex 450 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( 2 ^ N )  ||  A  ->  ( ( |_ `  ( A  /  (
2 ^ N ) ) )  x.  (
2 ^ N ) )  =  A ) )
4120, 40impbid 202 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( A  / 
( 2 ^ N
) ) )  x.  ( 2 ^ N
) )  =  A  <-> 
( 2 ^ N
)  ||  A )
)
422, 16, 413bitrrd 295 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( 2 ^ N )  ||  A  <->  ( (bits `  A )  i^i  ( ZZ>= `  N )
)  =  (bits `  A ) ) )
43 df-ss 3588 . 2  |-  ( (bits `  A )  C_  ( ZZ>=
`  N )  <->  ( (bits `  A )  i^i  ( ZZ>=
`  N ) )  =  (bits `  A
) )
4442, 43syl6bbr 278 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( 2 ^ N )  ||  A  <->  (bits `  A )  C_  ( ZZ>=
`  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   |_cfl 12591   ^cexp 12860    || cdvds 14983  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  bitsshft  15197
  Copyright terms: Public domain W3C validator