MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumullem Structured version   Visualization version   Unicode version

Theorem smumullem 15214
Description: Lemma for smumul 15215. (Contributed by Mario Carneiro, 22-Sep-2016.)
Hypotheses
Ref Expression
smumullem.a  |-  ( ph  ->  A  e.  ZZ )
smumullem.b  |-  ( ph  ->  B  e.  ZZ )
smumullem.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
smumullem  |-  ( ph  ->  ( ( (bits `  A )  i^i  (
0..^ N ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ N
) )  x.  B
) ) )

Proof of Theorem smumullem
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smumullem.n . 2  |-  ( ph  ->  N  e.  NN0 )
2 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  0  ->  (
0..^ x )  =  ( 0..^ 0 ) )
3 fzo0 12492 . . . . . . . . . 10  |-  ( 0..^ 0 )  =  (/)
42, 3syl6eq 2672 . . . . . . . . 9  |-  ( x  =  0  ->  (
0..^ x )  =  (/) )
54ineq2d 3814 . . . . . . . 8  |-  ( x  =  0  ->  (
(bits `  A )  i^i  ( 0..^ x ) )  =  ( (bits `  A )  i^i  (/) ) )
6 in0 3968 . . . . . . . 8  |-  ( (bits `  A )  i^i  (/) )  =  (/)
75, 6syl6eq 2672 . . . . . . 7  |-  ( x  =  0  ->  (
(bits `  A )  i^i  ( 0..^ x ) )  =  (/) )
87oveq1d 6665 . . . . . 6  |-  ( x  =  0  ->  (
( (bits `  A
)  i^i  ( 0..^ x ) ) smul  (bits `  B ) )  =  ( (/) smul  (bits `  B
) ) )
9 bitsss 15148 . . . . . . 7  |-  (bits `  B )  C_  NN0
10 smu02 15209 . . . . . . 7  |-  ( (bits `  B )  C_  NN0  ->  (
(/) smul  (bits `  B )
)  =  (/) )
119, 10ax-mp 5 . . . . . 6  |-  ( (/) smul  (bits `  B ) )  =  (/)
128, 11syl6eq 2672 . . . . 5  |-  ( x  =  0  ->  (
( (bits `  A
)  i^i  ( 0..^ x ) ) smul  (bits `  B ) )  =  (/) )
13 oveq2 6658 . . . . . . . . 9  |-  ( x  =  0  ->  (
2 ^ x )  =  ( 2 ^ 0 ) )
14 2cn 11091 . . . . . . . . . 10  |-  2  e.  CC
15 exp0 12864 . . . . . . . . . 10  |-  ( 2  e.  CC  ->  (
2 ^ 0 )  =  1 )
1614, 15ax-mp 5 . . . . . . . . 9  |-  ( 2 ^ 0 )  =  1
1713, 16syl6eq 2672 . . . . . . . 8  |-  ( x  =  0  ->  (
2 ^ x )  =  1 )
1817oveq2d 6666 . . . . . . 7  |-  ( x  =  0  ->  ( A  mod  ( 2 ^ x ) )  =  ( A  mod  1
) )
1918oveq1d 6665 . . . . . 6  |-  ( x  =  0  ->  (
( A  mod  (
2 ^ x ) )  x.  B )  =  ( ( A  mod  1 )  x.  B ) )
2019fveq2d 6195 . . . . 5  |-  ( x  =  0  ->  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  =  (bits `  ( ( A  mod  1 )  x.  B
) ) )
2112, 20eqeq12d 2637 . . . 4  |-  ( x  =  0  ->  (
( ( (bits `  A )  i^i  (
0..^ x ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  <->  (/)  =  (bits `  ( ( A  mod  1 )  x.  B
) ) ) )
2221imbi2d 330 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( ( (bits `  A )  i^i  ( 0..^ x ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) ) )  <->  ( ph  -> 
(/)  =  (bits `  ( ( A  mod  1 )  x.  B
) ) ) ) )
23 oveq2 6658 . . . . . . 7  |-  ( x  =  k  ->  (
0..^ x )  =  ( 0..^ k ) )
2423ineq2d 3814 . . . . . 6  |-  ( x  =  k  ->  (
(bits `  A )  i^i  ( 0..^ x ) )  =  ( (bits `  A )  i^i  (
0..^ k ) ) )
2524oveq1d 6665 . . . . 5  |-  ( x  =  k  ->  (
( (bits `  A
)  i^i  ( 0..^ x ) ) smul  (bits `  B ) )  =  ( ( (bits `  A )  i^i  (
0..^ k ) ) smul  (bits `  B )
) )
26 oveq2 6658 . . . . . . . 8  |-  ( x  =  k  ->  (
2 ^ x )  =  ( 2 ^ k ) )
2726oveq2d 6666 . . . . . . 7  |-  ( x  =  k  ->  ( A  mod  ( 2 ^ x ) )  =  ( A  mod  (
2 ^ k ) ) )
2827oveq1d 6665 . . . . . 6  |-  ( x  =  k  ->  (
( A  mod  (
2 ^ x ) )  x.  B )  =  ( ( A  mod  ( 2 ^ k ) )  x.  B ) )
2928fveq2d 6195 . . . . 5  |-  ( x  =  k  ->  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) )
3025, 29eqeq12d 2637 . . . 4  |-  ( x  =  k  ->  (
( ( (bits `  A )  i^i  (
0..^ x ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  <->  ( (
(bits `  A )  i^i  ( 0..^ k ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) ) )
3130imbi2d 330 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( ( (bits `  A )  i^i  ( 0..^ x ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) ) )  <->  ( ph  ->  ( ( (bits `  A )  i^i  (
0..^ k ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) ) ) )
32 oveq2 6658 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
0..^ x )  =  ( 0..^ ( k  +  1 ) ) )
3332ineq2d 3814 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
(bits `  A )  i^i  ( 0..^ x ) )  =  ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) )
3433oveq1d 6665 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( (bits `  A
)  i^i  ( 0..^ x ) ) smul  (bits `  B ) )  =  ( ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) smul  (bits `  B )
) )
35 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  (
2 ^ x )  =  ( 2 ^ ( k  +  1 ) ) )
3635oveq2d 6666 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( A  mod  ( 2 ^ x ) )  =  ( A  mod  (
2 ^ ( k  +  1 ) ) ) )
3736oveq1d 6665 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( A  mod  (
2 ^ x ) )  x.  B )  =  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B ) )
3837fveq2d 6195 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) ) )
3934, 38eqeq12d 2637 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( (bits `  A )  i^i  (
0..^ x ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  <->  ( (
(bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) ) ) )
4039imbi2d 330 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( ( (bits `  A )  i^i  ( 0..^ x ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) ) )  <->  ( ph  ->  ( ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) ) ) ) )
41 oveq2 6658 . . . . . . 7  |-  ( x  =  N  ->  (
0..^ x )  =  ( 0..^ N ) )
4241ineq2d 3814 . . . . . 6  |-  ( x  =  N  ->  (
(bits `  A )  i^i  ( 0..^ x ) )  =  ( (bits `  A )  i^i  (
0..^ N ) ) )
4342oveq1d 6665 . . . . 5  |-  ( x  =  N  ->  (
( (bits `  A
)  i^i  ( 0..^ x ) ) smul  (bits `  B ) )  =  ( ( (bits `  A )  i^i  (
0..^ N ) ) smul  (bits `  B )
) )
44 oveq2 6658 . . . . . . . 8  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
4544oveq2d 6666 . . . . . . 7  |-  ( x  =  N  ->  ( A  mod  ( 2 ^ x ) )  =  ( A  mod  (
2 ^ N ) ) )
4645oveq1d 6665 . . . . . 6  |-  ( x  =  N  ->  (
( A  mod  (
2 ^ x ) )  x.  B )  =  ( ( A  mod  ( 2 ^ N ) )  x.  B ) )
4746fveq2d 6195 . . . . 5  |-  ( x  =  N  ->  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ N
) )  x.  B
) ) )
4843, 47eqeq12d 2637 . . . 4  |-  ( x  =  N  ->  (
( ( (bits `  A )  i^i  (
0..^ x ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) )  <->  ( (
(bits `  A )  i^i  ( 0..^ N ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ N
) )  x.  B
) ) ) )
4948imbi2d 330 . . 3  |-  ( x  =  N  ->  (
( ph  ->  ( ( (bits `  A )  i^i  ( 0..^ x ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ x
) )  x.  B
) ) )  <->  ( ph  ->  ( ( (bits `  A )  i^i  (
0..^ N ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ N
) )  x.  B
) ) ) ) )
50 smumullem.a . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
51 zmod10 12686 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  mod  1 )  =  0 )
5250, 51syl 17 . . . . . . 7  |-  ( ph  ->  ( A  mod  1
)  =  0 )
5352oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( A  mod  1 )  x.  B
)  =  ( 0  x.  B ) )
54 smumullem.b . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
5554zcnd 11483 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
5655mul02d 10234 . . . . . 6  |-  ( ph  ->  ( 0  x.  B
)  =  0 )
5753, 56eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( A  mod  1 )  x.  B
)  =  0 )
5857fveq2d 6195 . . . 4  |-  ( ph  ->  (bits `  ( ( A  mod  1 )  x.  B ) )  =  (bits `  0 )
)
59 0bits 15161 . . . 4  |-  (bits ` 
0 )  =  (/)
6058, 59syl6req 2673 . . 3  |-  ( ph  -> 
(/)  =  (bits `  ( ( A  mod  1 )  x.  B
) ) )
61 oveq1 6657 . . . . . 6  |-  ( ( ( (bits `  A
)  i^i  ( 0..^ k ) ) smul  (bits `  B ) )  =  (bits `  ( ( A  mod  ( 2 ^ k ) )  x.  B ) )  -> 
( ( ( (bits `  A )  i^i  (
0..^ k ) ) smul  (bits `  B )
) sadd  { n  e.  NN0  |  ( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) } )  =  ( (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) sadd  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } ) )
62 bitsss 15148 . . . . . . . . 9  |-  (bits `  A )  C_  NN0
6362a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  (bits `  A
)  C_  NN0 )
649a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  (bits `  B
)  C_  NN0 )
65 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
6663, 64, 65smup1 15211 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
(bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  =  ( ( ( (bits `  A )  i^i  (
0..^ k ) ) smul  (bits `  B )
) sadd  { n  e.  NN0  |  ( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) } ) )
67 bitsinv1lem 15163 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A  mod  (
2 ^ ( k  +  1 ) ) )  =  ( ( A  mod  ( 2 ^ k ) )  +  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 ) ) )
6850, 67sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A  mod  ( 2 ^ (
k  +  1 ) ) )  =  ( ( A  mod  (
2 ^ k ) )  +  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )
6968oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B )  =  ( ( ( A  mod  ( 2 ^ k
) )  +  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) )  x.  B ) )
7050adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  ZZ )
71 2nn 11185 . . . . . . . . . . . . . . 15  |-  2  e.  NN
7271a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  NN )
7372, 65nnexpcld 13030 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2 ^ k )  e.  NN )
7470, 73zmodcld 12691 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A  mod  ( 2 ^ k
) )  e.  NN0 )
7574nn0cnd 11353 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A  mod  ( 2 ^ k
) )  e.  CC )
7673nnnn0d 11351 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2 ^ k )  e. 
NN0 )
77 0nn0 11307 . . . . . . . . . . . . 13  |-  0  e.  NN0
78 ifcl 4130 . . . . . . . . . . . . 13  |-  ( ( ( 2 ^ k
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  e. 
NN0 )
7976, 77, 78sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  e. 
NN0 )
8079nn0cnd 11353 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  e.  CC )
8155adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
8275, 80, 81adddird 10065 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  mod  (
2 ^ k ) )  +  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) )  x.  B )  =  ( ( ( A  mod  ( 2 ^ k ) )  x.  B )  +  ( if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  x.  B ) ) )
8380, 81mulcomd 10061 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  x.  B )  =  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )
8483oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  mod  (
2 ^ k ) )  x.  B )  +  ( if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  x.  B ) )  =  ( ( ( A  mod  ( 2 ^ k ) )  x.  B )  +  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) )
8569, 82, 843eqtrd 2660 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B )  =  ( ( ( A  mod  ( 2 ^ k
) )  x.  B
)  +  ( B  x.  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 ) ) ) )
8685fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  (bits `  (
( A  mod  (
2 ^ ( k  +  1 ) ) )  x.  B ) )  =  (bits `  ( ( ( A  mod  ( 2 ^ k ) )  x.  B )  +  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) ) )
8774nn0zd 11480 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A  mod  ( 2 ^ k
) )  e.  ZZ )
8854adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  ZZ )
8987, 88zmulcld 11488 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  mod  ( 2 ^ k ) )  x.  B )  e.  ZZ )
9079nn0zd 11480 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 )  e.  ZZ )
9188, 90zmulcld 11488 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) )  e.  ZZ )
92 sadadd 15189 . . . . . . . . 9  |-  ( ( ( ( A  mod  ( 2 ^ k
) )  x.  B
)  e.  ZZ  /\  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) )  e.  ZZ )  -> 
( (bits `  (
( A  mod  (
2 ^ k ) )  x.  B ) ) sadd  (bits `  ( B  x.  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) )  =  (bits `  ( ( ( A  mod  ( 2 ^ k ) )  x.  B )  +  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) ) )
9389, 91, 92syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) sadd  (bits `  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) )  =  (bits `  ( ( ( A  mod  ( 2 ^ k ) )  x.  B )  +  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) ) )
94 oveq2 6658 . . . . . . . . . . . 12  |-  ( ( 2 ^ k )  =  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 )  ->  ( B  x.  ( 2 ^ k ) )  =  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )
9594fveq2d 6195 . . . . . . . . . . 11  |-  ( ( 2 ^ k )  =  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 )  ->  (bits `  ( B  x.  (
2 ^ k ) ) )  =  (bits `  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) )
9695eqeq1d 2624 . . . . . . . . . 10  |-  ( ( 2 ^ k )  =  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 )  ->  (
(bits `  ( B  x.  ( 2 ^ k
) ) )  =  { n  e.  NN0  |  ( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) }  <->  (bits `  ( B  x.  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )  =  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } ) )
97 oveq2 6658 . . . . . . . . . . . 12  |-  ( 0  =  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 )  ->  ( B  x.  0 )  =  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )
9897fveq2d 6195 . . . . . . . . . . 11  |-  ( 0  =  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 )  ->  (bits `  ( B  x.  0 ) )  =  (bits `  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) )
9998eqeq1d 2624 . . . . . . . . . 10  |-  ( 0  =  if ( k  e.  (bits `  A
) ,  ( 2 ^ k ) ,  0 )  ->  (
(bits `  ( B  x.  0 ) )  =  { n  e.  NN0  |  ( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) }  <->  (bits `  ( B  x.  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )  =  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } ) )
100 bitsshft 15197 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  ->  { n  e.  NN0  |  ( n  -  k
)  e.  (bits `  B ) }  =  (bits `  ( B  x.  ( 2 ^ k
) ) ) )
10154, 100sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  { n  e.  NN0  |  ( n  -  k )  e.  (bits `  B ) }  =  (bits `  ( B  x.  ( 2 ^ k ) ) ) )
102 ibar 525 . . . . . . . . . . . 12  |-  ( k  e.  (bits `  A
)  ->  ( (
n  -  k )  e.  (bits `  B
)  <->  ( k  e.  (bits `  A )  /\  ( n  -  k
)  e.  (bits `  B ) ) ) )
103102rabbidv 3189 . . . . . . . . . . 11  |-  ( k  e.  (bits `  A
)  ->  { n  e.  NN0  |  ( n  -  k )  e.  (bits `  B ) }  =  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } )
104101, 103sylan9req 2677 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  e.  (bits `  A )
)  ->  (bits `  ( B  x.  ( 2 ^ k ) ) )  =  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } )
10581adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  B  e.  CC )
106105mul01d 10235 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  ( B  x.  0 )  =  0 )
107106fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  (bits `  ( B  x.  0 ) )  =  (bits `  0 ) )
108 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  -.  k  e.  (bits `  A
) )
109108intnanrd 963 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  -.  ( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) )
110109ralrimivw 2967 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  A. n  e.  NN0  -.  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) )
111 rabeq0 3957 . . . . . . . . . . . 12  |-  ( { n  e.  NN0  | 
( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) }  =  (/)  <->  A. n  e.  NN0  -.  ( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) )
112110, 111sylibr 224 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) }  =  (/) )
11359, 107, 1123eqtr4a 2682 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  (bits `  A
) )  ->  (bits `  ( B  x.  0 ) )  =  {
n  e.  NN0  | 
( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) } )
11496, 99, 104, 113ifbothda 4123 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  (bits `  ( B  x.  if (
k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) )  =  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } )
115114oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) sadd  (bits `  ( B  x.  if ( k  e.  (bits `  A ) ,  ( 2 ^ k ) ,  0 ) ) ) )  =  ( (bits `  ( ( A  mod  ( 2 ^ k ) )  x.  B ) ) sadd  {
n  e.  NN0  | 
( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) } ) )
11686, 93, 1153eqtr2d 2662 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  (bits `  (
( A  mod  (
2 ^ ( k  +  1 ) ) )  x.  B ) )  =  ( (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) sadd  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } ) )
11766, 116eqeq12d 2637 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B ) )  =  (bits `  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B ) )  <->  ( (
( (bits `  A
)  i^i  ( 0..^ k ) ) smul  (bits `  B ) ) sadd  {
n  e.  NN0  | 
( k  e.  (bits `  A )  /\  (
n  -  k )  e.  (bits `  B
) ) } )  =  ( (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) sadd  { n  e.  NN0  |  ( k  e.  (bits `  A
)  /\  ( n  -  k )  e.  (bits `  B )
) } ) ) )
11861, 117syl5ibr 236 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( (bits `  A
)  i^i  ( 0..^ k ) ) smul  (bits `  B ) )  =  (bits `  ( ( A  mod  ( 2 ^ k ) )  x.  B ) )  -> 
( ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) ) ) )
119118expcom 451 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( (bits `  A )  i^i  (
0..^ k ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) )  ->  (
( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B ) )  =  (bits `  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B ) ) ) ) )
120119a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( (bits `  A )  i^i  (
0..^ k ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ k
) )  x.  B
) ) )  -> 
( ph  ->  ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  =  (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) ) ) ) )
12122, 31, 40, 49, 60, 120nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( ( (bits `  A )  i^i  (
0..^ N ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ N
) )  x.  B
) ) ) )
1221, 121mpcom 38 1  |-  ( ph  ->  ( ( (bits `  A )  i^i  (
0..^ N ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ N
) )  x.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465    mod cmo 12668   ^cexp 12860  bitscbits 15141   sadd csad 15142   smul csmu 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173  df-smu 15198
This theorem is referenced by:  smumul  15215
  Copyright terms: Public domain W3C validator