Proof of Theorem chfacfisfcpmat
| Step | Hyp | Ref
| Expression |
| 1 | | chfacfisfcpmat.s |
. . . . . . . 8

ConstPolyMat   |
| 2 | | chfacfisf.p |
. . . . . . . 8
Poly1   |
| 3 | | chfacfisf.y |
. . . . . . . 8
 Mat   |
| 4 | 1, 2, 3 | cpmatsubgpmat 20525 |
. . . . . . 7
 

SubGrp    |
| 5 | 4 | 3adant3 1081 |
. . . . . 6
 
 SubGrp    |
| 6 | 5 | adantr 481 |
. . . . 5
    
        SubGrp    |
| 7 | | subgsubm 17616 |
. . . . . . 7
 SubGrp 
SubMnd    |
| 8 | | chfacfisf.0 |
. . . . . . . 8
     |
| 9 | 8 | subm0cl 17352 |
. . . . . . 7
 SubMnd 
  |
| 10 | 5, 7, 9 | 3syl 18 |
. . . . . 6
 
   |
| 11 | 10 | adantr 481 |
. . . . 5
    
       
  |
| 12 | 1, 2, 3 | cpmatsrgpmat 20526 |
. . . . . . . 8
 

SubRing    |
| 13 | 12 | 3adant3 1081 |
. . . . . . 7
 
 SubRing    |
| 14 | 13 | adantr 481 |
. . . . . 6
    
        SubRing    |
| 15 | | chfacfisf.t |
. . . . . . . 8

matToPolyMat   |
| 16 | | chfacfisf.a |
. . . . . . . 8
 Mat   |
| 17 | | chfacfisf.b |
. . . . . . . 8
     |
| 18 | 1, 15, 16, 17 | m2cpm 20546 |
. . . . . . 7
 
       |
| 19 | 18 | adantr 481 |
. . . . . 6
    
              |
| 20 | | 3simpa 1058 |
. . . . . . . . 9
 
 
   |
| 21 | | elmapi 7879 |
. . . . . . . . . . 11
                 |
| 22 | 21 | adantl 482 |
. . . . . . . . . 10
 
                 |
| 23 | | nnnn0 11299 |
. . . . . . . . . . . . 13
   |
| 24 | | nn0uz 11722 |
. . . . . . . . . . . . 13
     |
| 25 | 23, 24 | syl6eleq 2711 |
. . . . . . . . . . . 12
       |
| 26 | | eluzfz1 12348 |
. . . . . . . . . . . 12
    
      |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
       |
| 28 | 27 | adantr 481 |
. . . . . . . . . 10
 
             |
| 29 | 22, 28 | ffvelrnd 6360 |
. . . . . . . . 9
 
             |
| 30 | 20, 29 | anim12i 590 |
. . . . . . . 8
    
                  |
| 31 | | df-3an 1039 |
. . . . . . . 8
 
    
 
        |
| 32 | 30, 31 | sylibr 224 |
. . . . . . 7
    
        
       |
| 33 | 1, 15, 16, 17 | m2cpm 20546 |
. . . . . . 7
 
               |
| 34 | 32, 33 | syl 17 |
. . . . . 6
    
                  |
| 35 | | chfacfisf.r |
. . . . . . 7
     |
| 36 | 35 | subrgmcl 18792 |
. . . . . 6
  SubRing 
                             |
| 37 | 14, 19, 34, 36 | syl3anc 1326 |
. . . . 5
    
                        |
| 38 | | chfacfisf.s |
. . . . . 6
     |
| 39 | 38 | subgsubcl 17605 |
. . . . 5
  SubGrp 
    
                           |
| 40 | 6, 11, 37, 39 | syl3anc 1326 |
. . . 4
    
                         |
| 41 | 40 | ad2antrr 762 |
. . 3
    
 
         
                 |
| 42 | | simpl1 1064 |
. . . . . . 7
    
          |
| 43 | | simpl2 1065 |
. . . . . . 7
    
          |
| 44 | 22 | adantl 482 |
. . . . . . . 8
    
                  |
| 45 | | eluzfz2 12349 |
. . . . . . . . . 10
    
      |
| 46 | 25, 45 | syl 17 |
. . . . . . . . 9
       |
| 47 | 46 | ad2antrl 764 |
. . . . . . . 8
    
              |
| 48 | 44, 47 | ffvelrnd 6360 |
. . . . . . 7
    
              |
| 49 | 1, 15, 16, 17 | m2cpm 20546 |
. . . . . . 7
 
               |
| 50 | 42, 43, 48, 49 | syl3anc 1326 |
. . . . . 6
    
                  |
| 51 | 50 | adantr 481 |
. . . . 5
   

                    |
| 52 | 51 | ad2antrr 762 |
. . . 4
     
 
                       |
| 53 | 11 | ad4antr 768 |
. . . . 5
        
         
     
  |
| 54 | | nn0re 11301 |
. . . . . . . . . . . . . . . 16

  |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . 15
 

  |
| 56 | | peano2nn 11032 |
. . . . . . . . . . . . . . . . 17
     |
| 57 | 56 | nnred 11035 |
. . . . . . . . . . . . . . . 16
     |
| 58 | 57 | adantr 481 |
. . . . . . . . . . . . . . 15
 
     |
| 59 | 55, 58 | lenltd 10183 |
. . . . . . . . . . . . . 14
 
         |
| 60 | | nesym 2850 |
. . . . . . . . . . . . . . . 16
  
    |
| 61 | | ltlen 10138 |
. . . . . . . . . . . . . . . . . . 19
                 |
| 62 | 54, 57, 61 | syl2anr 495 |
. . . . . . . . . . . . . . . . . 18
 
             |
| 63 | 62 | biimprd 238 |
. . . . . . . . . . . . . . . . 17
 
             |
| 64 | 63 | expcomd 454 |
. . . . . . . . . . . . . . . 16
 
             |
| 65 | 60, 64 | syl5bir 233 |
. . . . . . . . . . . . . . 15
 
   
  
      |
| 66 | 65 | com23 86 |
. . . . . . . . . . . . . 14
 
             |
| 67 | 59, 66 | sylbird 250 |
. . . . . . . . . . . . 13
 
   

        |
| 68 | 67 | com23 86 |
. . . . . . . . . . . 12
 
   
         |
| 69 | 68 | impd 447 |
. . . . . . . . . . 11
 
             |
| 70 | 69 | ex 450 |
. . . . . . . . . 10
               |
| 71 | 70 | ad2antrl 764 |
. . . . . . . . 9
    
                      |
| 72 | 71 | imp 445 |
. . . . . . . 8
   

                      |
| 73 | 72 | adantr 481 |
. . . . . . 7
    
 
                      |
| 74 | 5 | ad4antr 768 |
. . . . . . . . 9
     
 
             SubGrp    |
| 75 | 20 | ad4antr 768 |
. . . . . . . . . . 11
     
 
             
   |
| 76 | 22 | ad4antlr 769 |
. . . . . . . . . . . 12
     
 
                       |
| 77 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
   |
| 78 | 77 | necon3bi 2820 |
. . . . . . . . . . . . . . . . . 18
   |
| 79 | 78 | anim2i 593 |
. . . . . . . . . . . . . . . . 17
 

    |
| 80 | | elnnne0 11306 |
. . . . . . . . . . . . . . . . 17

    |
| 81 | 79, 80 | sylibr 224 |
. . . . . . . . . . . . . . . 16
 

  |
| 82 | | nnm1nn0 11334 |
. . . . . . . . . . . . . . . 16
     |
| 83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . . 15
 

    |
| 84 | 83 | adantll 750 |
. . . . . . . . . . . . . 14
    
 
              |
| 85 | 84 | adantr 481 |
. . . . . . . . . . . . 13
     
 
                 |
| 86 | 23 | adantr 481 |
. . . . . . . . . . . . . 14
 
         |
| 87 | 86 | ad4antlr 769 |
. . . . . . . . . . . . 13
     
 
               |
| 88 | 62 | simprbda 653 |
. . . . . . . . . . . . . . . . . . 19
   
       |
| 89 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
   
     |
| 90 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . 20
   
     |
| 91 | | nnre 11027 |
. . . . . . . . . . . . . . . . . . . . 21
   |
| 92 | 91 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
   
     |
| 93 | 89, 90, 92 | lesubaddd 10624 |
. . . . . . . . . . . . . . . . . . 19
   
     
     |
| 94 | 88, 93 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
   
       |
| 95 | 94 | exp31 630 |
. . . . . . . . . . . . . . . . 17
      
    |
| 96 | 95 | ad2antrl 764 |
. . . . . . . . . . . . . . . 16
    
           
      |
| 97 | 96 | imp 445 |
. . . . . . . . . . . . . . 15
   

          
   
   |
| 98 | 97 | adantr 481 |
. . . . . . . . . . . . . 14
    
 
          
   
   |
| 99 | 98 | imp 445 |
. . . . . . . . . . . . 13
     
 
                 |
| 100 | | elfz2nn0 12431 |
. . . . . . . . . . . . 13
      
  
     |
| 101 | 85, 87, 99, 100 | syl3anbrc 1246 |
. . . . . . . . . . . 12
     
 
                     |
| 102 | 76, 101 | ffvelrnd 6360 |
. . . . . . . . . . 11
     
 
                     |
| 103 | | df-3an 1039 |
. . . . . . . . . . 11
 
      
 
          |
| 104 | 75, 102, 103 | sylanbrc 698 |
. . . . . . . . . 10
     
 
             
         |
| 105 | 1, 15, 16, 17 | m2cpm 20546 |
. . . . . . . . . 10
 
                   |
| 106 | 104, 105 | syl 17 |
. . . . . . . . 9
     
 
                         |
| 107 | 14 | ad2antrr 762 |
. . . . . . . . . . 11
    
 
           
SubRing    |
| 108 | 19 | ad2antrr 762 |
. . . . . . . . . . 11
    
 
           
      |
| 109 | 20, 86 | anim12i 590 |
. . . . . . . . . . . . . . 15
    
              |
| 110 | | df-3an 1039 |
. . . . . . . . . . . . . . 15
 

 
    |
| 111 | 109, 110 | sylibr 224 |
. . . . . . . . . . . . . 14
    
        
   |
| 112 | 111 | ad2antrr 762 |
. . . . . . . . . . . . 13
    
 
           
    |
| 113 | 112 | simp1d 1073 |
. . . . . . . . . . . 12
    
 
           
  |
| 114 | 112 | simp2d 1074 |
. . . . . . . . . . . 12
    
 
           
  |
| 115 | 44 | ad2antrr 762 |
. . . . . . . . . . . . 13
    
 
           
          |
| 116 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
   
     |
| 117 | 23 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
   
     |
| 118 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . . 19

  |
| 119 | | nnz 11399 |
. . . . . . . . . . . . . . . . . . 19
   |
| 120 | | zleltp1 11428 |
. . . . . . . . . . . . . . . . . . 19
 
       |
| 121 | 118, 119,
120 | syl2anr 495 |
. . . . . . . . . . . . . . . . . 18
 
       |
| 122 | 121 | biimpar 502 |
. . . . . . . . . . . . . . . . 17
   
     |
| 123 | | elfz2nn0 12431 |
. . . . . . . . . . . . . . . . 17
    

   |
| 124 | 116, 117,
122, 123 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . 16
   
         |
| 125 | 124 | exp31 630 |
. . . . . . . . . . . . . . 15
    
        |
| 126 | 125 | ad2antrl 764 |
. . . . . . . . . . . . . 14
    
           
        |
| 127 | 126 | imp31 448 |
. . . . . . . . . . . . 13
    
 
           
      |
| 128 | 115, 127 | ffvelrnd 6360 |
. . . . . . . . . . . 12
    
 
           
      |
| 129 | 1, 15, 16, 17 | m2cpm 20546 |
. . . . . . . . . . . 12
 
               |
| 130 | 113, 114,
128, 129 | syl3anc 1326 |
. . . . . . . . . . 11
    
 
           
          |
| 131 | 35 | subrgmcl 18792 |
. . . . . . . . . . 11
  SubRing 
                             |
| 132 | 107, 108,
130, 131 | syl3anc 1326 |
. . . . . . . . . 10
    
 
           
                |
| 133 | 132 | adantlr 751 |
. . . . . . . . 9
     
 
                 
           |
| 134 | 38 | subgsubcl 17605 |
. . . . . . . . 9
  SubGrp                                                       |
| 135 | 74, 106, 133, 134 | syl3anc 1326 |
. . . . . . . 8
     
 
                                         |
| 136 | 135 | ex 450 |
. . . . . . 7
    
 
          
                 
             |
| 137 | 73, 136 | syld 47 |
. . . . . 6
    
 
                                
             |
| 138 | 137 | impl 650 |
. . . . 5
        
         
                                  |
| 139 | 53, 138 | ifclda 4120 |
. . . 4
     
 
         
                       
             |
| 140 | 52, 139 | ifclda 4120 |
. . 3
    
 
           
                                               |
| 141 | 41, 140 | ifclda 4120 |
. 2
   

           

    
                                             
               |
| 142 | | chfacfisf.g |
. 2
                     
                                                |
| 143 | 141, 142 | fmptd 6385 |
1
    
              |