MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Visualization version   Unicode version

Theorem cygznlem3 19918
Description: A cyclic group with  n elements is isomorphic to  ZZ  /  n ZZ. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
cygzn.f  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
Assertion
Ref Expression
cygznlem3  |-  ( ph  ->  G  ~=g𝑔  Y )
Distinct variable groups:    m, n, x, B    m, G, n, x    .x. , m, n, x   
m, Y, n, x   
m, L, n, x   
x, N    ph, m    n, F, x    m, X, n, x
Allowed substitution hints:    ph( x, n)    E( x, m, n)    F( m)    N( m, n)

Proof of Theorem cygznlem3
Dummy variables  a 
b  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
2 cygzn.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2622 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
4 eqid 2622 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
5 cygzn.n . . . . . 6  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
6 hashcl 13147 . . . . . . . 8  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
76adantl 482 . . . . . . 7  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
8 0nn0 11307 . . . . . . . 8  |-  0  e.  NN0
98a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
107, 9ifclda 4120 . . . . . 6  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
115, 10syl5eqel 2705 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
12 cygzn.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
1312zncrng 19893 . . . . 5  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
14 crngring 18558 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
15 ringgrp 18552 . . . . 5  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
1611, 13, 14, 154syl 19 . . . 4  |-  ( ph  ->  Y  e.  Grp )
17 cygzn.g . . . . 5  |-  ( ph  ->  G  e. CycGrp )
18 cyggrp 18291 . . . . 5  |-  ( G  e. CycGrp  ->  G  e.  Grp )
1917, 18syl 17 . . . 4  |-  ( ph  ->  G  e.  Grp )
20 cygzn.m . . . . 5  |-  .x.  =  (.g
`  G )
21 cygzn.l . . . . 5  |-  L  =  ( ZRHom `  Y
)
22 cygzn.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
23 cygzn.x . . . . 5  |-  ( ph  ->  X  e.  E )
24 cygzn.f . . . . 5  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 19916 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) --> B )
2612, 1, 21znzrhfo 19896 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
2711, 26syl 17 . . . . . . 7  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Y ) )
28 foelrn 6378 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  a  e.  ( Base `  Y ) )  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
2927, 28sylan 488 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
30 foelrn 6378 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3127, 30sylan 488 . . . . . 6  |-  ( (
ph  /\  b  e.  ( Base `  Y )
)  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3229, 31anim12dan 882 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
33 reeanv 3107 . . . . . . 7  |-  ( E. i  e.  ZZ  E. j  e.  ZZ  (
a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  <->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
3419adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  G  e.  Grp )
35 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
i  e.  ZZ )
36 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
j  e.  ZZ )
372, 20, 22iscyggen 18282 . . . . . . . . . . . . . 14  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
3837simplbi 476 . . . . . . . . . . . . 13  |-  ( X  e.  E  ->  X  e.  B )
3923, 38syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
4039adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  X  e.  B )
412, 20, 4mulgdir 17573 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( i  e.  ZZ  /\  j  e.  ZZ  /\  X  e.  B )
)  ->  ( (
i  +  j ) 
.x.  X )  =  ( ( i  .x.  X ) ( +g  `  G ) ( j 
.x.  X ) ) )
4234, 35, 36, 40, 41syl13anc 1328 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( i  +  j )  .x.  X
)  =  ( ( i  .x.  X ) ( +g  `  G
) ( j  .x.  X ) ) )
4311, 13syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Y  e.  CRing )
4421zrhrhm 19860 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
45 rhmghm 18725 . . . . . . . . . . . . . . 15  |-  ( L  e.  (ring RingHom  Y )  ->  L  e.  (ring  GrpHom  Y ) )
4643, 14, 44, 454syl 19 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  e.  (ring  GrpHom  Y ) )
4746adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  L  e.  (ring  GrpHom  Y ) )
48 zringbas 19824 . . . . . . . . . . . . . 14  |-  ZZ  =  ( Base ` ring )
49 zringplusg 19825 . . . . . . . . . . . . . 14  |-  +  =  ( +g  ` ring )
5048, 49, 3ghmlin 17665 . . . . . . . . . . . . 13  |-  ( ( L  e.  (ring  GrpHom  Y )  /\  i  e.  ZZ  /\  j  e.  ZZ )  ->  ( L `  ( i  +  j ) )  =  ( ( L `  i
) ( +g  `  Y
) ( L `  j ) ) )
5147, 35, 36, 50syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( L `  (
i  +  j ) )  =  ( ( L `  i ) ( +g  `  Y
) ( L `  j ) ) )
5251fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( F `
 ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) ) )
53 zaddcl 11417 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  j  e.  ZZ )  ->  ( i  +  j )  e.  ZZ )
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 19917 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  +  j )  e.  ZZ )  ->  ( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j )  .x.  X
) )
5553, 54sylan2 491 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j ) 
.x.  X ) )
5652, 55eqtr3d 2658 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( i  +  j )  .x.  X ) )
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 19917 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ZZ )  ->  ( F `
 ( L `  i ) )  =  ( i  .x.  X
) )
5857adantrr 753 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  i )
)  =  ( i 
.x.  X ) )
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 19917 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ZZ )  ->  ( F `
 ( L `  j ) )  =  ( j  .x.  X
) )
6059adantrl 752 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  j )
)  =  ( j 
.x.  X ) )
6158, 60oveq12d 6668 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) )  =  ( ( i  .x.  X
) ( +g  `  G
) ( j  .x.  X ) ) )
6242, 56, 613eqtr4d 2666 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
63 oveq12 6659 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a ( +g  `  Y ) b )  =  ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) )
6463fveq2d 6195 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( F `  (
a ( +g  `  Y
) b ) )  =  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) ) )
65 fveq2 6191 . . . . . . . . . . 11  |-  ( a  =  ( L `  i )  ->  ( F `  a )  =  ( F `  ( L `  i ) ) )
66 fveq2 6191 . . . . . . . . . . 11  |-  ( b  =  ( L `  j )  ->  ( F `  b )  =  ( F `  ( L `  j ) ) )
6765, 66oveqan12d 6669 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
6864, 67eqeq12d 2637 . . . . . . . . 9  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) )  <->  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) )  =  ( ( F `  ( L `
 i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) ) ) )
6962, 68syl5ibrcom 237 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7069rexlimdvva 3038 . . . . . . 7  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7133, 70syl5bir 233 . . . . . 6  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7271imp 445 . . . . 5  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) )
7332, 72syldan 487 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( F `  ( a
( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) ) )
741, 2, 3, 4, 16, 19, 25, 73isghmd 17669 . . 3  |-  ( ph  ->  F  e.  ( Y 
GrpHom  G ) )
7558, 60eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( i  .x.  X )  =  ( j  .x.  X ) ) )
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 19915 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( L `  i )  =  ( L `  j )  <-> 
( i  .x.  X
)  =  ( j 
.x.  X ) ) )
7775, 76bitr4d 271 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( L `  i )  =  ( L `  j ) ) )
7877biimpd 219 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  -> 
( L `  i
)  =  ( L `
 j ) ) )
7965, 66eqeqan12d 2638 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( F `  ( L `  i )
)  =  ( F `
 ( L `  j ) ) ) )
80 eqeq12 2635 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a  =  b  <-> 
( L `  i
)  =  ( L `
 j ) ) )
8179, 80imbi12d 334 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b )  <->  ( ( F `  ( L `  i ) )  =  ( F `  ( L `  j )
)  ->  ( L `  i )  =  ( L `  j ) ) ) )
8278, 81syl5ibrcom 237 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8382rexlimdvva 3038 . . . . . . . . 9  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8433, 83syl5bir 233 . . . . . . . 8  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8584imp 445 . . . . . . 7  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) )
8632, 85syldan 487 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
8786ralrimivva 2971 . . . . 5  |-  ( ph  ->  A. a  e.  (
Base `  Y ) A. b  e.  ( Base `  Y ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
88 dff13 6512 . . . . 5  |-  ( F : ( Base `  Y
) -1-1-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. a  e.  ( Base `  Y
) A. b  e.  ( Base `  Y
) ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) ) )
8925, 87, 88sylanbrc 698 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -1-1-> B )
902, 20, 22iscyggen2 18283 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9119, 90syl 17 . . . . . . . 8  |-  ( ph  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9223, 91mpbid 222 . . . . . . 7  |-  ( ph  ->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) )
9392simprd 479 . . . . . 6  |-  ( ph  ->  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) )
94 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  .x.  X )  =  ( j  .x.  X ) )
9594eqeq2d 2632 . . . . . . . . 9  |-  ( n  =  j  ->  (
z  =  ( n 
.x.  X )  <->  z  =  ( j  .x.  X
) ) )
9695cbvrexv 3172 . . . . . . . 8  |-  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  <->  E. j  e.  ZZ  z  =  ( j  .x.  X ) )
9727adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ -onto-> ( Base `  Y
) )
98 fof 6115 . . . . . . . . . . . . 13  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
9997, 98syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ --> ( Base `  Y
) )
10099ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( L `  j )  e.  ( Base `  Y
) )
10159adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( F `  ( L `  j ) )  =  ( j  .x.  X
) )
102101eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )
103 fveq2 6191 . . . . . . . . . . . . 13  |-  ( a  =  ( L `  j )  ->  ( F `  a )  =  ( F `  ( L `  j ) ) )
104103eqeq2d 2632 . . . . . . . . . . . 12  |-  ( a  =  ( L `  j )  ->  (
( j  .x.  X
)  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  ( L `
 j ) ) ) )
105104rspcev 3309 . . . . . . . . . . 11  |-  ( ( ( L `  j
)  e.  ( Base `  Y )  /\  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
106100, 102, 105syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
107 eqeq1 2626 . . . . . . . . . . 11  |-  ( z  =  ( j  .x.  X )  ->  (
z  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  a ) ) )
108107rexbidv 3052 . . . . . . . . . 10  |-  ( z  =  ( j  .x.  X )  ->  ( E. a  e.  ( Base `  Y ) z  =  ( F `  a )  <->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) ) )
109106, 108syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
z  =  ( j 
.x.  X )  ->  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
110109rexlimdva 3031 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  ( E. j  e.  ZZ  z  =  ( j  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11196, 110syl5bi 232 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
112111ralimdva 2962 . . . . . 6  |-  ( ph  ->  ( A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
11393, 112mpd 15 . . . . 5  |-  ( ph  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) )
114 dffo3 6374 . . . . 5  |-  ( F : ( Base `  Y
) -onto-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. z  e.  B  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11525, 113, 114sylanbrc 698 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -onto-> B )
116 df-f1o 5895 . . . 4  |-  ( F : ( Base `  Y
)
-1-1-onto-> B 
<->  ( F : (
Base `  Y ) -1-1->
B  /\  F :
( Base `  Y ) -onto-> B ) )
11789, 115, 116sylanbrc 698 . . 3  |-  ( ph  ->  F : ( Base `  Y ) -1-1-onto-> B )
1181, 2isgim 17704 . . 3  |-  ( F  e.  ( Y GrpIso  G
)  <->  ( F  e.  ( Y  GrpHom  G )  /\  F : (
Base `  Y ) -1-1-onto-> B
) )
11974, 117, 118sylanbrc 698 . 2  |-  ( ph  ->  F  e.  ( Y GrpIso  G ) )
120 brgici 17712 . 2  |-  ( F  e.  ( Y GrpIso  G
)  ->  Y  ~=g𝑔  G )
121 gicsym 17716 . 2  |-  ( Y 
~=g𝑔  G  ->  G  ~=g𝑔  Y )
122119, 120, 1213syl 18 1  |-  ( ph  ->  G  ~=g𝑔  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   ifcif 4086   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936    + caddc 9939   NN0cn0 11292   ZZcz 11377   #chash 13117   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422  .gcmg 17540    GrpHom cghm 17657   GrpIso cgim 17699    ~=g𝑔 cgic 17700  CycGrpccyg 18279   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  ℤringzring 19818   ZRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-gic 17702  df-od 17948  df-cmn 18195  df-abl 18196  df-cyg 18280  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  cygzn  19919
  Copyright terms: Public domain W3C validator