MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlt Structured version   Visualization version   Unicode version

Theorem dgrlt 24022
Description: Two ways to say that the degree of  F is strictly less than  N. (Contributed by Mario Carneiro, 25-Jul-2014.)
Hypotheses
Ref Expression
dgreq0.1  |-  N  =  (deg `  F )
dgreq0.2  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgrlt  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  (
( F  =  0p  \/  N  < 
M )  <->  ( N  <_  M  /\  ( A `
 M )  =  0 ) ) )

Proof of Theorem dgrlt
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  F  =  0p )
21fveq2d 6195 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  (deg `  F
)  =  (deg ` 
0p ) )
3 dgreq0.1 . . . . . 6  |-  N  =  (deg `  F )
4 dgr0 24018 . . . . . . 7  |-  (deg ` 
0p )  =  0
54eqcomi 2631 . . . . . 6  |-  0  =  (deg `  0p
)
62, 3, 53eqtr4g 2681 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  N  =  0 )
7 nn0ge0 11318 . . . . . 6  |-  ( M  e.  NN0  ->  0  <_  M )
87ad2antlr 763 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  0  <_  M
)
96, 8eqbrtrd 4675 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  N  <_  M
)
101fveq2d 6195 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  (coeff `  F
)  =  (coeff ` 
0p ) )
11 dgreq0.2 . . . . . . 7  |-  A  =  (coeff `  F )
12 coe0 24012 . . . . . . . 8  |-  (coeff ` 
0p )  =  ( NN0  X.  {
0 } )
1312eqcomi 2631 . . . . . . 7  |-  ( NN0 
X.  { 0 } )  =  (coeff ` 
0p )
1410, 11, 133eqtr4g 2681 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  A  =  ( NN0  X.  { 0 } ) )
1514fveq1d 6193 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  ( A `  M )  =  ( ( NN0  X.  {
0 } ) `  M ) )
16 c0ex 10034 . . . . . . 7  |-  0  e.  _V
1716fvconst2 6469 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( NN0  X.  { 0 } ) `  M
)  =  0 )
1817ad2antlr 763 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  ( ( NN0 
X.  { 0 } ) `  M )  =  0 )
1915, 18eqtrd 2656 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  ( A `  M )  =  0 )
209, 19jca 554 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  F  =  0p )  ->  ( N  <_  M  /\  ( A `  M )  =  0 ) )
21 dgrcl 23989 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
223, 21syl5eqel 2705 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
2322nn0red 11352 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  N  e.  RR )
24 nn0re 11301 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  RR )
25 ltle 10126 . . . . . 6  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( N  <  M  ->  N  <_  M )
)
2623, 24, 25syl2an 494 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  ( N  <  M  ->  N  <_  M ) )
2726imp 445 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  N  <  M )  ->  N  <_  M )
2811, 3dgrub 23990 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  <_  N )
29283expia 1267 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  (
( A `  M
)  =/=  0  ->  M  <_  N ) )
30 lenlt 10116 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
3124, 23, 30syl2anr 495 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  ( M  <_  N  <->  -.  N  <  M ) )
3229, 31sylibd 229 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  (
( A `  M
)  =/=  0  ->  -.  N  <  M ) )
3332necon4ad 2813 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  ( N  <  M  ->  ( A `  M )  =  0 ) )
3433imp 445 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  N  <  M )  ->  ( A `  M )  =  0 )
3527, 34jca 554 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  N  <  M )  ->  ( N  <_  M  /\  ( A `  M )  =  0 ) )
3620, 35jaodan 826 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( F  =  0p  \/  N  <  M ) )  ->  ( N  <_  M  /\  ( A `
 M )  =  0 ) )
37 leloe 10124 . . . . . . 7  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
3823, 24, 37syl2an 494 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M ) ) )
3938biimpa 501 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  N  <_  M )  ->  ( N  <  M  \/  N  =  M ) )
4039adantrr 753 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( N  < 
M  \/  N  =  M ) )
41 fveq2 6191 . . . . . 6  |-  ( N  =  M  ->  ( A `  N )  =  ( A `  M ) )
423, 11dgreq0 24021 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
4342ad2antrr 762 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
44 simprr 796 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( A `  M )  =  0 )
4544eqeq2d 2632 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( ( A `
 N )  =  ( A `  M
)  <->  ( A `  N )  =  0 ) )
4643, 45bitr4d 271 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( F  =  0p  <->  ( A `  N )  =  ( A `  M ) ) )
4741, 46syl5ibr 236 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( N  =  M  ->  F  = 
0p ) )
4847orim2d 885 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( ( N  <  M  \/  N  =  M )  ->  ( N  <  M  \/  F  =  0p ) ) )
4940, 48mpd 15 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( N  < 
M  \/  F  =  0p ) )
5049orcomd 403 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  /\  ( N  <_  M  /\  ( A `  M )  =  0 ) )  ->  ( F  =  0p  \/  N  <  M ) )
5136, 50impbida 877 1  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0 )  ->  (
( F  =  0p  \/  N  < 
M )  <->  ( N  <_  M  /\  ( A `
 M )  =  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075   NN0cn0 11292   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  dgrcolem2  24030  plydivlem4  24051  plydiveu  24053  dgrsub2  37705  elaa2lem  40450
  Copyright terms: Public domain W3C validator