MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsubm Structured version   Visualization version   Unicode version

Theorem efsubm 24297
Description: The image of a subgroup of the group  +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1  |-  F  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
efabl.2  |-  G  =  ( (mulGrp ` fld )s  ran  F )
efabl.3  |-  ( ph  ->  A  e.  CC )
efabl.4  |-  ( ph  ->  X  e.  (SubGrp ` fld )
)
Assertion
Ref Expression
efsubm  |-  ( ph  ->  ran  F  e.  (SubMnd `  (mulGrp ` fld ) ) )
Distinct variable groups:    x, A    x, F    x, G    x, X    ph, x

Proof of Theorem efsubm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eff 14812 . . . . . 6  |-  exp : CC
--> CC
21a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  exp : CC --> CC )
3 efabl.3 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
5 efabl.4 . . . . . . . 8  |-  ( ph  ->  X  e.  (SubGrp ` fld )
)
6 cnfldbas 19750 . . . . . . . . 9  |-  CC  =  ( Base ` fld )
76subgss 17595 . . . . . . . 8  |-  ( X  e.  (SubGrp ` fld )  ->  X  C_  CC )
85, 7syl 17 . . . . . . 7  |-  ( ph  ->  X  C_  CC )
98sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  CC )
104, 9mulcld 10060 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( A  x.  x )  e.  CC )
112, 10ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( exp `  ( A  x.  x ) )  e.  CC )
1211ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  X  ( exp `  ( A  x.  x ) )  e.  CC )
13 efabl.1 . . . 4  |-  F  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
1413rnmptss 6392 . . 3  |-  ( A. x  e.  X  ( exp `  ( A  x.  x ) )  e.  CC  ->  ran  F  C_  CC )
1512, 14syl 17 . 2  |-  ( ph  ->  ran  F  C_  CC )
163mul01d 10235 . . . . 5  |-  ( ph  ->  ( A  x.  0 )  =  0 )
1716fveq2d 6195 . . . 4  |-  ( ph  ->  ( exp `  ( A  x.  0 ) )  =  ( exp `  0 ) )
18 ef0 14821 . . . 4  |-  ( exp `  0 )  =  1
1917, 18syl6eq 2672 . . 3  |-  ( ph  ->  ( exp `  ( A  x.  0 ) )  =  1 )
20 cnfld0 19770 . . . . . 6  |-  0  =  ( 0g ` fld )
2120subg0cl 17602 . . . . 5  |-  ( X  e.  (SubGrp ` fld )  ->  0  e.  X )
225, 21syl 17 . . . 4  |-  ( ph  ->  0  e.  X )
23 fvex 6201 . . . 4  |-  ( exp `  ( A  x.  0 ) )  e.  _V
24 oveq2 6658 . . . . . 6  |-  ( x  =  0  ->  ( A  x.  x )  =  ( A  x.  0 ) )
2524fveq2d 6195 . . . . 5  |-  ( x  =  0  ->  ( exp `  ( A  x.  x ) )  =  ( exp `  ( A  x.  0 ) ) )
2613, 25elrnmpt1s 5373 . . . 4  |-  ( ( 0  e.  X  /\  ( exp `  ( A  x.  0 ) )  e.  _V )  -> 
( exp `  ( A  x.  0 ) )  e.  ran  F
)
2722, 23, 26sylancl 694 . . 3  |-  ( ph  ->  ( exp `  ( A  x.  0 ) )  e.  ran  F
)
2819, 27eqeltrrd 2702 . 2  |-  ( ph  ->  1  e.  ran  F
)
29 efabl.2 . . . . . . . . 9  |-  G  =  ( (mulGrp ` fld )s  ran  F )
3013, 29, 3, 5efabl 24296 . . . . . . . 8  |-  ( ph  ->  G  e.  Abel )
31 ablgrp 18198 . . . . . . . 8  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3230, 31syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  Grp )
33323ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  ->  G  e.  Grp )
34 simp2 1062 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  ->  x  e.  ran  F )
35 eqid 2622 . . . . . . . . . . 11  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
3635, 6mgpbas 18495 . . . . . . . . . 10  |-  CC  =  ( Base `  (mulGrp ` fld ) )
3729, 36ressbas2 15931 . . . . . . . . 9  |-  ( ran 
F  C_  CC  ->  ran 
F  =  ( Base `  G ) )
3815, 37syl 17 . . . . . . . 8  |-  ( ph  ->  ran  F  =  (
Base `  G )
)
39383ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  ->  ran  F  =  ( Base `  G ) )
4034, 39eleqtrd 2703 . . . . . 6  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  ->  x  e.  ( Base `  G ) )
41 simp3 1063 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  -> 
y  e.  ran  F
)
4241, 39eleqtrd 2703 . . . . . 6  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  -> 
y  e.  ( Base `  G ) )
43 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
44 eqid 2622 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
4543, 44grpcl 17430 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
4633, 40, 42, 45syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  -> 
( x ( +g  `  G ) y )  e.  ( Base `  G
) )
47 mptexg 6484 . . . . . . . . . 10  |-  ( X  e.  (SubGrp ` fld )  ->  ( x  e.  X  |->  ( exp `  ( A  x.  x
) ) )  e. 
_V )
485, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )  e.  _V )
4913, 48syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  F  e.  _V )
50 rnexg 7098 . . . . . . . 8  |-  ( F  e.  _V  ->  ran  F  e.  _V )
51 cnfldmul 19752 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
5235, 51mgpplusg 18493 . . . . . . . . 9  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
5329, 52ressplusg 15993 . . . . . . . 8  |-  ( ran 
F  e.  _V  ->  x.  =  ( +g  `  G
) )
5449, 50, 533syl 18 . . . . . . 7  |-  ( ph  ->  x.  =  ( +g  `  G ) )
55543ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  ->  x.  =  ( +g  `  G ) )
5655oveqd 6667 . . . . 5  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  -> 
( x  x.  y
)  =  ( x ( +g  `  G
) y ) )
5746, 56, 393eltr4d 2716 . . . 4  |-  ( (
ph  /\  x  e.  ran  F  /\  y  e. 
ran  F )  -> 
( x  x.  y
)  e.  ran  F
)
58573expb 1266 . . 3  |-  ( (
ph  /\  ( x  e.  ran  F  /\  y  e.  ran  F ) )  ->  ( x  x.  y )  e.  ran  F )
5958ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  ran  F A. y  e.  ran  F ( x  x.  y
)  e.  ran  F
)
60 cnring 19768 . . 3  |-fld  e.  Ring
6135ringmgp 18553 . . 3  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
62 cnfld1 19771 . . . . 5  |-  1  =  ( 1r ` fld )
6335, 62ringidval 18503 . . . 4  |-  1  =  ( 0g `  (mulGrp ` fld ) )
6436, 63, 52issubm 17347 . . 3  |-  ( (mulGrp ` fld )  e.  Mnd  ->  ( ran  F  e.  (SubMnd `  (mulGrp ` fld ) )  <->  ( ran  F 
C_  CC  /\  1  e.  ran  F  /\  A. x  e.  ran  F A. y  e.  ran  F ( x  x.  y )  e.  ran  F ) ) )
6560, 61, 64mp2b 10 . 2  |-  ( ran 
F  e.  (SubMnd `  (mulGrp ` fld ) )  <->  ( ran  F 
C_  CC  /\  1  e.  ran  F  /\  A. x  e.  ran  F A. y  e.  ran  F ( x  x.  y )  e.  ran  F ) )
6615, 28, 59, 65syl3anbrc 1246 1  |-  ( ph  ->  ran  F  e.  (SubMnd `  (mulGrp ` fld ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941   expce 14792   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   Mndcmnd 17294  SubMndcsubmnd 17334   Grpcgrp 17422  SubGrpcsubg 17588   Abelcabl 18194  mulGrpcmgp 18489   Ringcrg 18547  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-cnfld 19747
This theorem is referenced by:  circsubm  24299
  Copyright terms: Public domain W3C validator