MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem10 Structured version   Visualization version   Unicode version

Theorem ipasslem10 27694
Description: Lemma for ipassi 27696. Show the inner product associative law for the imaginary number  _i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ipasslem10.a  |-  A  e.  X
ipasslem10.b  |-  B  e.  X
ipasslem10.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
ipasslem10  |-  ( ( _i S A ) P B )  =  ( _i  x.  ( A P B ) )

Proof of Theorem ipasslem10
StepHypRef Expression
1 ip1i.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
21phnvi 27671 . . . . . 6  |-  U  e.  NrmCVec
3 ipasslem10.b . . . . . 6  |-  B  e.  X
4 ax-icn 9995 . . . . . . 7  |-  _i  e.  CC
5 ipasslem10.a . . . . . . 7  |-  A  e.  X
6 ip1i.1 . . . . . . . 8  |-  X  =  ( BaseSet `  U )
7 ip1i.4 . . . . . . . 8  |-  S  =  ( .sOLD `  U )
86, 7nvscl 27481 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  A  e.  X )  ->  (
_i S A )  e.  X )
92, 4, 5, 8mp3an 1424 . . . . . 6  |-  ( _i S A )  e.  X
10 ip1i.2 . . . . . . 7  |-  G  =  ( +v `  U
)
11 ipasslem10.6 . . . . . . 7  |-  N  =  ( normCV `  U )
12 ip1i.7 . . . . . . 7  |-  P  =  ( .iOLD `  U )
136, 10, 7, 11, 124ipval2 27563 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( 4  x.  ( B P ( _i S A ) ) )  =  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) )
142, 3, 9, 13mp3an 1424 . . . . 5  |-  ( 4  x.  ( B P ( _i S A ) ) )  =  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )
15 4cn 11098 . . . . . . 7  |-  4  e.  CC
16 negicn 10282 . . . . . . 7  |-  -u _i  e.  CC
176, 12dipcl 27567 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  e.  CC )
182, 3, 5, 17mp3an 1424 . . . . . . 7  |-  ( B P A )  e.  CC
1915, 16, 18mul12i 10231 . . . . . 6  |-  ( 4  x.  ( -u _i  x.  ( B P A ) ) )  =  ( -u _i  x.  ( 4  x.  ( B P A ) ) )
206, 10nvgcl 27475 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( B G ( _i S A ) )  e.  X )
212, 3, 9, 20mp3an 1424 . . . . . . . . . . . . 13  |-  ( B G ( _i S A ) )  e.  X
226, 11, 2, 21nvcli 27517 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( _i S A ) ) )  e.  RR
2322recni 10052 . . . . . . . . . . 11  |-  ( N `
 ( B G ( _i S A ) ) )  e.  CC
2423sqcli 12944 . . . . . . . . . 10  |-  ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  e.  CC
25 neg1cn 11124 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
266, 7nvscl 27481 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  ( _i S A )  e.  X )  ->  ( -u 1 S ( _i S A ) )  e.  X )
272, 25, 9, 26mp3an 1424 . . . . . . . . . . . . . 14  |-  ( -u
1 S ( _i S A ) )  e.  X
286, 10nvgcl 27475 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u 1 S ( _i S A ) )  e.  X )  -> 
( B G (
-u 1 S ( _i S A ) ) )  e.  X
)
292, 3, 27, 28mp3an 1424 . . . . . . . . . . . . 13  |-  ( B G ( -u 1 S ( _i S A ) ) )  e.  X
306, 11, 2, 29nvcli 27517 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) )  e.  RR
3130recni 10052 . . . . . . . . . . 11  |-  ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) )  e.  CC
3231sqcli 12944 . . . . . . . . . 10  |-  ( ( N `  ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 )  e.  CC
3324, 32subcli 10357 . . . . . . . . 9  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  e.  CC
346, 7nvscl 27481 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  ( _i S A )  e.  X )  ->  (
_i S ( _i S A ) )  e.  X )
352, 4, 9, 34mp3an 1424 . . . . . . . . . . . . . . 15  |-  ( _i S ( _i S A ) )  e.  X
366, 10nvgcl 27475 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S ( _i S A ) )  e.  X )  -> 
( B G ( _i S ( _i S A ) ) )  e.  X )
372, 3, 35, 36mp3an 1424 . . . . . . . . . . . . . 14  |-  ( B G ( _i S
( _i S A ) ) )  e.  X
386, 11, 2, 37nvcli 27517 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( _i S ( _i S A ) ) ) )  e.  RR
3938recni 10052 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( _i S ( _i S A ) ) ) )  e.  CC
4039sqcli 12944 . . . . . . . . . . 11  |-  ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  e.  CC
416, 7nvscl 27481 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  ( _i S A )  e.  X )  ->  ( -u _i S ( _i S A ) )  e.  X )
422, 16, 9, 41mp3an 1424 . . . . . . . . . . . . . . 15  |-  ( -u _i S ( _i S A ) )  e.  X
436, 10nvgcl 27475 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u _i S ( _i S A ) )  e.  X )  -> 
( B G (
-u _i S ( _i S A ) ) )  e.  X
)
442, 3, 42, 43mp3an 1424 . . . . . . . . . . . . . 14  |-  ( B G ( -u _i S ( _i S A ) ) )  e.  X
456, 11, 2, 44nvcli 27517 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( -u _i S
( _i S A ) ) ) )  e.  RR
4645recni 10052 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( -u _i S
( _i S A ) ) ) )  e.  CC
4746sqcli 12944 . . . . . . . . . . 11  |-  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 )  e.  CC
4840, 47subcli 10357 . . . . . . . . . 10  |-  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) )  e.  CC
494, 48mulcli 10045 . . . . . . . . 9  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  e.  CC
5033, 49addcomi 10227 . . . . . . . 8  |-  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )  =  ( ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  +  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) )
516, 10nvgcl 27475 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B G A )  e.  X )
522, 3, 5, 51mp3an 1424 . . . . . . . . . . . . . 14  |-  ( B G A )  e.  X
536, 11, 2, 52nvcli 27517 . . . . . . . . . . . . 13  |-  ( N `
 ( B G A ) )  e.  RR
5453recni 10052 . . . . . . . . . . . 12  |-  ( N `
 ( B G A ) )  e.  CC
5554sqcli 12944 . . . . . . . . . . 11  |-  ( ( N `  ( B G A ) ) ^ 2 )  e.  CC
566, 7nvscl 27481 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
572, 25, 5, 56mp3an 1424 . . . . . . . . . . . . . . 15  |-  ( -u
1 S A )  e.  X
586, 10nvgcl 27475 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u 1 S A )  e.  X )  -> 
( B G (
-u 1 S A ) )  e.  X
)
592, 3, 57, 58mp3an 1424 . . . . . . . . . . . . . 14  |-  ( B G ( -u 1 S A ) )  e.  X
606, 11, 2, 59nvcli 27517 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( -u 1 S A ) ) )  e.  RR
6160recni 10052 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( -u 1 S A ) ) )  e.  CC
6261sqcli 12944 . . . . . . . . . . 11  |-  ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  e.  CC
6355, 62subcli 10357 . . . . . . . . . 10  |-  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  e.  CC
646, 7nvscl 27481 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  A  e.  X )  ->  ( -u _i S A )  e.  X )
652, 16, 5, 64mp3an 1424 . . . . . . . . . . . . . . . 16  |-  ( -u _i S A )  e.  X
666, 10nvgcl 27475 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u _i S A )  e.  X )  -> 
( B G (
-u _i S A ) )  e.  X
)
672, 3, 65, 66mp3an 1424 . . . . . . . . . . . . . . 15  |-  ( B G ( -u _i S A ) )  e.  X
686, 11, 2, 67nvcli 27517 . . . . . . . . . . . . . 14  |-  ( N `
 ( B G ( -u _i S A ) ) )  e.  RR
6968recni 10052 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( -u _i S A ) ) )  e.  CC
7069sqcli 12944 . . . . . . . . . . . 12  |-  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 )  e.  CC
7124, 70subcli 10357 . . . . . . . . . . 11  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) )  e.  CC
724, 71mulcli 10045 . . . . . . . . . 10  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  e.  CC
7316, 63, 72adddii 10050 . . . . . . . . 9  |-  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )  =  ( ( -u _i  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  +  ( -u _i  x.  ( _i  x.  (
( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
744, 4, 53pm3.2i 1239 . . . . . . . . . . . . . . . . . 18  |-  ( _i  e.  CC  /\  _i  e.  CC  /\  A  e.  X )
756, 7nvsass 27483 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  (
_i  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( _i  x.  _i ) S A )  =  ( _i S
( _i S A ) ) )
762, 74, 75mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i ) S A )  =  ( _i S ( _i S A ) )
77 ixi 10656 . . . . . . . . . . . . . . . . . 18  |-  ( _i  x.  _i )  = 
-u 1
7877oveq1i 6660 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i ) S A )  =  ( -u 1 S A )
7976, 78eqtr3i 2646 . . . . . . . . . . . . . . . 16  |-  ( _i S ( _i S A ) )  =  ( -u 1 S A )
8079oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( B G ( _i S
( _i S A ) ) )  =  ( B G (
-u 1 S A ) )
8180fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( N `
 ( B G ( _i S ( _i S A ) ) ) )  =  ( N `  ( B G ( -u 1 S A ) ) )
8281oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  =  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 )
834, 4mulneg1i 10476 . . . . . . . . . . . . . . . . . . 19  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
8477negeqi 10274 . . . . . . . . . . . . . . . . . . 19  |-  -u (
_i  x.  _i )  =  -u -u 1
85 negneg1e1 11128 . . . . . . . . . . . . . . . . . . 19  |-  -u -u 1  =  1
8683, 84, 853eqtri 2648 . . . . . . . . . . . . . . . . . 18  |-  ( -u _i  x.  _i )  =  1
8786oveq1i 6660 . . . . . . . . . . . . . . . . 17  |-  ( (
-u _i  x.  _i ) S A )  =  ( 1 S A )
8816, 4, 53pm3.2i 1239 . . . . . . . . . . . . . . . . . 18  |-  ( -u _i  e.  CC  /\  _i  e.  CC  /\  A  e.  X )
896, 7nvsass 27483 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  ( -u _i  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( -u _i  x.  _i ) S A )  =  ( -u _i S ( _i S A ) ) )
902, 88, 89mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( (
-u _i  x.  _i ) S A )  =  ( -u _i S
( _i S A ) )
916, 7nvsid 27482 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
922, 5, 91mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( 1 S A )  =  A
9387, 90, 923eqtr3i 2652 . . . . . . . . . . . . . . . 16  |-  ( -u _i S ( _i S A ) )  =  A
9493oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( B G ( -u _i S ( _i S A ) ) )  =  ( B G A )
9594fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( N `
 ( B G ( -u _i S
( _i S A ) ) ) )  =  ( N `  ( B G A ) )
9695oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 )  =  ( ( N `
 ( B G A ) ) ^
2 )
9782, 96oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) )  =  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) )
9897oveq2i 6661 . . . . . . . . . . 11  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) ) )
9963mulm1i 10475 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  = 
-u ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )
10055, 62negsubdi2i 10367 . . . . . . . . . . . . . 14  |-  -u (
( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S A ) ) ) ^ 2 ) )  =  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) )
10199, 100eqtr2i 2645 . . . . . . . . . . . . 13  |-  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) )  =  ( -u
1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )
102101oveq2i 6661 . . . . . . . . . . . 12  |-  ( _i  x.  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) ) )  =  ( _i  x.  ( -u
1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) ) )
1034, 25, 63mulassi 10049 . . . . . . . . . . . 12  |-  ( ( _i  x.  -u 1
)  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( -u 1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) ) )
104102, 103eqtr4i 2647 . . . . . . . . . . 11  |-  ( _i  x.  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) ) )  =  ( ( _i  x.  -u 1
)  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )
1054mulm1i 10475 . . . . . . . . . . . . 13  |-  ( -u
1  x.  _i )  =  -u _i
10625, 4, 105mulcomli 10047 . . . . . . . . . . . 12  |-  ( _i  x.  -u 1 )  = 
-u _i
107106oveq1i 6660 . . . . . . . . . . 11  |-  ( ( _i  x.  -u 1
)  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  =  ( -u _i  x.  ( ( ( N `
 ( B G A ) ) ^
2 )  -  (
( N `  ( B G ( -u 1 S A ) ) ) ^ 2 ) ) )
10898, 104, 1073eqtri 2648 . . . . . . . . . 10  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  =  (
-u _i  x.  (
( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S A ) ) ) ^ 2 ) ) )
10925, 4, 53pm3.2i 1239 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  e.  CC  /\  _i  e.  CC  /\  A  e.  X )
1106, 7nvsass 27483 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( -u 1  x.  _i ) S A )  =  ( -u
1 S ( _i S A ) ) )
1112, 109, 110mp2an 708 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  x.  _i ) S A )  =  ( -u 1 S ( _i S A ) )
112105oveq1i 6660 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  x.  _i ) S A )  =  ( -u _i S A )
113111, 112eqtr3i 2646 . . . . . . . . . . . . . . . . 17  |-  ( -u
1 S ( _i S A ) )  =  ( -u _i S A )
114113oveq2i 6661 . . . . . . . . . . . . . . . 16  |-  ( B G ( -u 1 S ( _i S A ) ) )  =  ( B G ( -u _i S A ) )
115114fveq2i 6194 . . . . . . . . . . . . . . 15  |-  ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) )  =  ( N `  ( B G ( -u _i S A ) ) )
116115oveq1i 6660 . . . . . . . . . . . . . 14  |-  ( ( N `  ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 )  =  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 )
117116oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) )
11871mulid2i 10043 . . . . . . . . . . . . 13  |-  ( 1  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  =  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) )
119117, 118eqtr4i 2647 . . . . . . . . . . . 12  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  ( 1  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )
12086oveq1i 6660 . . . . . . . . . . . 12  |-  ( (
-u _i  x.  _i )  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  =  ( 1  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )
121119, 120eqtr4i 2647 . . . . . . . . . . 11  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  ( ( -u _i  x.  _i )  x.  (
( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) ) )
12216, 4, 71mulassi 10049 . . . . . . . . . . 11  |-  ( (
-u _i  x.  _i )  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  =  (
-u _i  x.  (
_i  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) )
123121, 122eqtri 2644 . . . . . . . . . 10  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  (
-u _i  x.  (
_i  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) )
124108, 123oveq12i 6662 . . . . . . . . 9  |-  ( ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  +  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) )  =  ( (
-u _i  x.  (
( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S A ) ) ) ^ 2 ) ) )  +  ( -u _i  x.  ( _i  x.  ( ( ( N `
 ( B G ( _i S A ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
12573, 124eqtr4i 2647 . . . . . . . 8  |-  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  +  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) )
12650, 125eqtr4i 2647 . . . . . . 7  |-  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )  =  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
1276, 10, 7, 11, 124ipval2 27563 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
4  x.  ( B P A ) )  =  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
1282, 3, 5, 127mp3an 1424 . . . . . . . 8  |-  ( 4  x.  ( B P A ) )  =  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) )
129128oveq2i 6661 . . . . . . 7  |-  ( -u _i  x.  ( 4  x.  ( B P A ) ) )  =  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
130126, 129eqtr4i 2647 . . . . . 6  |-  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )  =  ( -u _i  x.  ( 4  x.  ( B P A ) ) )
13119, 130eqtr4i 2647 . . . . 5  |-  ( 4  x.  ( -u _i  x.  ( B P A ) ) )  =  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )
13214, 131eqtr4i 2647 . . . 4  |-  ( 4  x.  ( B P ( _i S A ) ) )  =  ( 4  x.  ( -u _i  x.  ( B P A ) ) )
1336, 12dipcl 27567 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( B P ( _i S A ) )  e.  CC )
1342, 3, 9, 133mp3an 1424 . . . . 5  |-  ( B P ( _i S A ) )  e.  CC
13516, 18mulcli 10045 . . . . 5  |-  ( -u _i  x.  ( B P A ) )  e.  CC
136 4ne0 11117 . . . . 5  |-  4  =/=  0
137134, 135, 15, 136mulcani 10666 . . . 4  |-  ( ( 4  x.  ( B P ( _i S A ) ) )  =  ( 4  x.  ( -u _i  x.  ( B P A ) ) )  <->  ( B P ( _i S A ) )  =  ( -u _i  x.  ( B P A ) ) )
138132, 137mpbi 220 . . 3  |-  ( B P ( _i S A ) )  =  ( -u _i  x.  ( B P A ) )
139138fveq2i 6194 . 2  |-  ( * `
 ( B P ( _i S A ) ) )  =  ( * `  ( -u _i  x.  ( B P A ) ) )
1406, 12dipcj 27569 . . 3  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( * `  ( B P ( _i S A ) ) )  =  ( ( _i S A ) P B ) )
1412, 3, 9, 140mp3an 1424 . 2  |-  ( * `
 ( B P ( _i S A ) ) )  =  ( ( _i S A ) P B )
14216, 18cjmuli 13929 . . 3  |-  ( * `
 ( -u _i  x.  ( B P A ) ) )  =  ( ( * `  -u _i )  x.  (
* `  ( B P A ) ) )
14325, 4cjmuli 13929 . . . . 5  |-  ( * `
 ( -u 1  x.  _i ) )  =  ( ( * `  -u 1 )  x.  (
* `  _i )
)
144105fveq2i 6194 . . . . 5  |-  ( * `
 ( -u 1  x.  _i ) )  =  ( * `  -u _i )
145 neg1rr 11125 . . . . . . . 8  |-  -u 1  e.  RR
14625cjrebi 13914 . . . . . . . 8  |-  ( -u
1  e.  RR  <->  ( * `  -u 1 )  = 
-u 1 )
147145, 146mpbi 220 . . . . . . 7  |-  ( * `
 -u 1 )  = 
-u 1
148 cji 13899 . . . . . . 7  |-  ( * `
 _i )  = 
-u _i
149147, 148oveq12i 6662 . . . . . 6  |-  ( ( * `  -u 1
)  x.  ( * `
 _i ) )  =  ( -u 1  x.  -u _i )
150 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
151150, 4mul2negi 10478 . . . . . 6  |-  ( -u
1  x.  -u _i )  =  ( 1  x.  _i )
1524mulid2i 10043 . . . . . 6  |-  ( 1  x.  _i )  =  _i
153149, 151, 1523eqtri 2648 . . . . 5  |-  ( ( * `  -u 1
)  x.  ( * `
 _i ) )  =  _i
154143, 144, 1533eqtr3i 2652 . . . 4  |-  ( * `
 -u _i )  =  _i
1556, 12dipcj 27569 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
* `  ( B P A ) )  =  ( A P B ) )
1562, 3, 5, 155mp3an 1424 . . . 4  |-  ( * `
 ( B P A ) )  =  ( A P B )
157154, 156oveq12i 6662 . . 3  |-  ( ( * `  -u _i )  x.  ( * `  ( B P A ) ) )  =  ( _i  x.  ( A P B ) )
158142, 157eqtri 2644 . 2  |-  ( * `
 ( -u _i  x.  ( B P A ) ) )  =  ( _i  x.  ( A P B ) )
159139, 141, 1583eqtr3i 2652 1  |-  ( ( _i S A ) P B )  =  ( _i  x.  ( A P B ) )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   2c2 11070   4c4 11072   ^cexp 12860   *ccj 13836   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   normCVcnmcv 27445   .iOLDcdip 27555   CPreHil OLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-dip 27556  df-ph 27668
This theorem is referenced by:  ipasslem11  27695
  Copyright terms: Public domain W3C validator