Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ivthALT Structured version   Visualization version   Unicode version

Theorem ivthALT 32330
Description: An alternate proof of the Intermediate Value Theorem ivth 23223 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ivthALT  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  E. x  e.  ( A (,) B ) ( F `  x )  =  U )
Distinct variable groups:    x, A    x, B    x, D    x, F    x, U

Proof of Theorem ivthALT
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp31 1097 . . . . . 6  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F  e.  ( D -cn-> CC ) )
2 cncff 22696 . . . . . 6  |-  ( F  e.  ( D -cn-> CC )  ->  F : D
--> CC )
31, 2syl 17 . . . . 5  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F : D --> CC )
4 ffun 6048 . . . . 5  |-  ( F : D --> CC  ->  Fun 
F )
53, 4syl 17 . . . 4  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  Fun  F )
653ad2ant3 1084 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  Fun  F )
7 iccconn 22633 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Conn )
873adant3 1081 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  (
( topGen `  ran  (,) )t  ( A [,] B ) )  e. Conn )
983ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Conn )
10 simpr1 1067 . . . . . . . . . . . . . 14  |-  ( ( D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F  e.  ( D -cn-> CC ) )
1110, 2syl 17 . . . . . . . . . . . . 13  |-  ( ( D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F : D --> CC )
1211anim2i 593 . . . . . . . . . . . 12  |-  ( ( ( A [,] B
)  C_  D  /\  ( D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( A [,] B )  C_  D  /\  F : D --> CC ) )
13123impb 1260 . . . . . . . . . . 11  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  (
( A [,] B
)  C_  D  /\  F : D --> CC ) )
14133ad2ant3 1084 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( A [,] B )  C_  D  /\  F : D --> CC ) )
154adantl 482 . . . . . . . . . . 11  |-  ( ( ( A [,] B
)  C_  D  /\  F : D --> CC )  ->  Fun  F )
16 fdm 6051 . . . . . . . . . . . . 13  |-  ( F : D --> CC  ->  dom 
F  =  D )
1716sseq2d 3633 . . . . . . . . . . . 12  |-  ( F : D --> CC  ->  ( ( A [,] B
)  C_  dom  F  <->  ( A [,] B )  C_  D
) )
1817biimparc 504 . . . . . . . . . . 11  |-  ( ( ( A [,] B
)  C_  D  /\  F : D --> CC )  ->  ( A [,] B )  C_  dom  F )
1915, 18jca 554 . . . . . . . . . 10  |-  ( ( ( A [,] B
)  C_  D  /\  F : D --> CC )  ->  ( Fun  F  /\  ( A [,] B
)  C_  dom  F ) )
2014, 19syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( Fun  F  /\  ( A [,] B ) 
C_  dom  F )
)
21 fores 6124 . . . . . . . . 9  |-  ( ( Fun  F  /\  ( A [,] B )  C_  dom  F )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B
) -onto-> ( F "
( A [,] B
) ) )
2220, 21syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> ( F
" ( A [,] B ) ) )
23 retop 22565 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  e.  Top
24 simp332 1215 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F " ( A [,] B ) ) 
C_  RR )
25 uniretop 22566 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
2625restuni 20966 . . . . . . . . . 10  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( F
" ( A [,] B ) )  C_  RR )  ->  ( F
" ( A [,] B ) )  = 
U. ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) )
2723, 24, 26sylancr 695 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F " ( A [,] B ) )  =  U. ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
28 foeq3 6113 . . . . . . . . 9  |-  ( ( F " ( A [,] B ) )  =  U. ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  ->  ( ( F  |`  ( A [,] B
) ) : ( A [,] B )
-onto-> ( F " ( A [,] B ) )  <-> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) ) )
2927, 28syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) )  <-> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) ) )
3022, 29mpbid 222 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
31 simp331 1214 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  F  e.  ( D -cn->
CC ) )
32 ssid 3624 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
33 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
34 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  D )  =  ( ( TopOpen ` fld )t  D )
3533cnfldtop 22587 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  e.  Top
3633cnfldtopon 22586 . . . . . . . . . . . . . . . . . . . 20  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3736toponunii 20721 . . . . . . . . . . . . . . . . . . 19  |-  CC  =  U. ( TopOpen ` fld )
3837restid 16094 . . . . . . . . . . . . . . . . . 18  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
3935, 38ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4039eqcomi 2631 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
4133, 34, 40cncfcn 22712 . . . . . . . . . . . . . . 15  |-  ( ( D  C_  CC  /\  CC  C_  CC )  ->  ( D -cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
4232, 41mpan2 707 . . . . . . . . . . . . . 14  |-  ( D 
C_  CC  ->  ( D
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
43423ad2ant2 1083 . . . . . . . . . . . . 13  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  ( D -cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
44433ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( D -cn-> CC )  =  ( ( (
TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
4531, 44eleqtrd 2703 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  F  e.  ( (
( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
46 simp31 1097 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A [,] B
)  C_  D )
47 simp32 1098 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  D  C_  CC )
48 resttopon 20965 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  (
( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
4936, 47, 48sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
50 toponuni 20719 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )t  D )  e.  (TopOn `  D )  ->  D  =  U. ( ( TopOpen ` fld )t  D
) )
5149, 50syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  D  =  U. (
( TopOpen ` fld )t  D ) )
5246, 51sseqtrd 3641 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A [,] B
)  C_  U. (
( TopOpen ` fld )t  D ) )
53 eqid 2622 . . . . . . . . . . . 12  |-  U. (
( TopOpen ` fld )t  D )  =  U. ( ( TopOpen ` fld )t  D )
5453cnrest 21089 . . . . . . . . . . 11  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) )  /\  ( A [,] B )  C_  U. ( ( TopOpen ` fld )t  D ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( ( ( TopOpen ` fld )t  D )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
5545, 52, 54syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( ( ( TopOpen ` fld )t  D )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
5635a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( TopOpen ` fld )  e.  Top )
57 cnex 10017 . . . . . . . . . . . . . 14  |-  CC  e.  _V
58 ssexg 4804 . . . . . . . . . . . . . 14  |-  ( ( D  C_  CC  /\  CC  e.  _V )  ->  D  e.  _V )
5947, 57, 58sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  D  e.  _V )
60 restabs 20969 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A [,] B
)  C_  D  /\  D  e.  _V )  ->  ( ( ( TopOpen ` fld )t  D
)t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
6156, 46, 59, 60syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( TopOpen ` fld )t  D
)t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
62 iccssre 12255 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
63623adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  ( A [,] B )  C_  RR )
64633ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A [,] B
)  C_  RR )
65 eqid 2622 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
6633, 65rerest 22607 . . . . . . . . . . . . 13  |-  ( ( A [,] B ) 
C_  RR  ->  ( (
TopOpen ` fld )t  ( A [,] B
) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
6764, 66syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( TopOpen ` fld )t  ( A [,] B ) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
6861, 67eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( TopOpen ` fld )t  D
)t  ( A [,] B
) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
6968oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( (
TopOpen ` fld )t  D )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  =  ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  Cn  ( TopOpen
` fld
) ) )
7055, 69eleqtrd 2703 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
7136a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( TopOpen ` fld )  e.  (TopOn `  CC ) )
72 df-ima 5127 . . . . . . . . . . . 12  |-  ( F
" ( A [,] B ) )  =  ran  ( F  |`  ( A [,] B ) )
7372eqimss2i 3660 . . . . . . . . . . 11  |-  ran  ( F  |`  ( A [,] B ) )  C_  ( F " ( A [,] B ) )
7473a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  ran  ( F  |`  ( A [,] B ) ) 
C_  ( F "
( A [,] B
) ) )
75 ax-resscn 9993 . . . . . . . . . . 11  |-  RR  C_  CC
7624, 75syl6ss 3615 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F " ( A [,] B ) ) 
C_  CC )
77 cnrest2 21090 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( F  |`  ( A [,] B ) ) 
C_  ( F "
( A [,] B
) )  /\  ( F " ( A [,] B ) )  C_  CC )  ->  ( ( F  |`  ( A [,] B ) )  e.  ( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  <->  ( F  |`  ( A [,] B
) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  Cn  (
( TopOpen ` fld )t  ( F "
( A [,] B
) ) ) ) ) )
7871, 74, 76, 77syl3anc 1326 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( F  |`  ( A [,] B ) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  <->  ( F  |`  ( A [,] B
) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  Cn  (
( TopOpen ` fld )t  ( F "
( A [,] B
) ) ) ) ) )
7970, 78mpbid 222 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( TopOpen ` fld )t  ( F " ( A [,] B ) ) ) ) )
8033, 65rerest 22607 . . . . . . . . . 10  |-  ( ( F " ( A [,] B ) ) 
C_  RR  ->  ( (
TopOpen ` fld )t  ( F " ( A [,] B ) ) )  =  ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
8124, 80syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( TopOpen ` fld )t  ( F "
( A [,] B
) ) )  =  ( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
8281oveq2d 6666 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  Cn  ( ( TopOpen ` fld )t  ( F "
( A [,] B
) ) ) )  =  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) ) )
8379, 82eleqtrd 2703 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) ) )
84 eqid 2622 . . . . . . . 8  |-  U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  =  U. ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )
8584cnconn 21225 . . . . . . 7  |-  ( ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Conn  /\  ( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  /\  ( F  |`  ( A [,] B ) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) ) )  ->  ( ( topGen `
 ran  (,) )t  ( F " ( A [,] B ) ) )  e. Conn )
869, 30, 83, 85syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e. Conn )
87 reconn 22631 . . . . . . . . 9  |-  ( ( F " ( A [,] B ) ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e. Conn 
<-> 
A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
88873ad2ant2 1083 . . . . . . . 8  |-  ( ( F  e.  ( D
-cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) )  ->  ( (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e. Conn 
<-> 
A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
89883ad2ant3 1084 . . . . . . 7  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  (
( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e. Conn  <->  A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
90893ad2ant3 1084 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) )  e. Conn  <->  A. x  e.  ( F
" ( A [,] B ) ) A. y  e.  ( F " ( A [,] B
) ) ( x [,] y )  C_  ( F " ( A [,] B ) ) ) )
9186, 90mpbid 222 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B
) ) ( x [,] y )  C_  ( F " ( A [,] B ) ) )
92 simp11 1091 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  e.  RR )
9392rexrd 10089 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  e.  RR* )
94 simp12 1092 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  B  e.  RR )
9594rexrd 10089 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  B  e.  RR* )
96 ltle 10126 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
9796imp 445 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  A  <_  B )
98973adantl3 1219 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B )  ->  A  <_  B
)
99983adant3 1081 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  <_  B )
100 lbicc2 12288 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
10193, 95, 99, 100syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  e.  ( A [,] B ) )
102 funfvima2 6493 . . . . . . 7  |-  ( ( Fun  F  /\  ( A [,] B )  C_  dom  F )  ->  ( A  e.  ( A [,] B )  ->  ( F `  A )  e.  ( F " ( A [,] B ) ) ) )
10320, 101, 102sylc 65 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  e.  ( F
" ( A [,] B ) ) )
104 ubicc2 12289 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
10593, 95, 99, 104syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  B  e.  ( A [,] B ) )
106 funfvima2 6493 . . . . . . 7  |-  ( ( Fun  F  /\  ( A [,] B )  C_  dom  F )  ->  ( B  e.  ( A [,] B )  ->  ( F `  B )  e.  ( F " ( A [,] B ) ) ) )
10720, 105, 106sylc 65 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  B
)  e.  ( F
" ( A [,] B ) ) )
108 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( F `  A )  ->  (
x [,] y )  =  ( ( F `
 A ) [,] y ) )
109108sseq1d 3632 . . . . . . 7  |-  ( x  =  ( F `  A )  ->  (
( x [,] y
)  C_  ( F " ( A [,] B
) )  <->  ( ( F `  A ) [,] y )  C_  ( F " ( A [,] B ) ) ) )
110 oveq2 6658 . . . . . . . 8  |-  ( y  =  ( F `  B )  ->  (
( F `  A
) [,] y )  =  ( ( F `
 A ) [,] ( F `  B
) ) )
111110sseq1d 3632 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  (
( ( F `  A ) [,] y
)  C_  ( F " ( A [,] B
) )  <->  ( ( F `  A ) [,] ( F `  B
) )  C_  ( F " ( A [,] B ) ) ) )
112109, 111rspc2v 3322 . . . . . 6  |-  ( ( ( F `  A
)  e.  ( F
" ( A [,] B ) )  /\  ( F `  B )  e.  ( F "
( A [,] B
) ) )  -> 
( A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) )  ->  (
( F `  A
) [,] ( F `
 B ) ) 
C_  ( F "
( A [,] B
) ) ) )
113103, 107, 112syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) )  ->  (
( F `  A
) [,] ( F `
 B ) ) 
C_  ( F "
( A [,] B
) ) ) )
11491, 113mpd 15 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( F `  A ) [,] ( F `  B )
)  C_  ( F " ( A [,] B
) ) )
115 ioossicc 12259 . . . . . . . 8  |-  ( ( F `  A ) (,) ( F `  B ) )  C_  ( ( F `  A ) [,] ( F `  B )
)
116115sseli 3599 . . . . . . 7  |-  ( U  e.  ( ( F `
 A ) (,) ( F `  B
) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B )
) )
1171163ad2ant3 1084 . . . . . 6  |-  ( ( F  e.  ( D
-cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B )
) )
1181173ad2ant3 1084 . . . . 5  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B )
) )
1191183ad2ant3 1084 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B
) ) )
120114, 119sseldd 3604 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  ( F " ( A [,] B
) ) )
121 fvelima 6248 . . 3  |-  ( ( Fun  F  /\  U  e.  ( F " ( A [,] B ) ) )  ->  E. x  e.  ( A [,] B
) ( F `  x )  =  U )
1226, 120, 121syl2anc 693 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  E. x  e.  ( A [,] B ) ( F `  x )  =  U )
123 simpl1 1064 . . . . . . . 8  |-  ( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  ->  x  e.  RR* )
124123a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  ->  x  e.  RR* ) )
125 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( F `  x )  =  U )
12624, 103sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  e.  RR )
127 simp333 1216 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  ( ( F `  A ) (,) ( F `  B
) ) )
128126rexrd 10089 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  e.  RR* )
12924, 107sseldd 3604 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  B
)  e.  RR )
130129rexrd 10089 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  B
)  e.  RR* )
131 elioo2 12216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  A
)  e.  RR*  /\  ( F `  B )  e.  RR* )  ->  ( U  e.  ( ( F `  A ) (,) ( F `  B
) )  <->  ( U  e.  RR  /\  ( F `
 A )  < 
U  /\  U  <  ( F `  B ) ) ) )
132128, 130, 131syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( U  e.  ( ( F `  A
) (,) ( F `
 B ) )  <-> 
( U  e.  RR  /\  ( F `  A
)  <  U  /\  U  <  ( F `  B ) ) ) )
133127, 132mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( U  e.  RR  /\  ( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
134133simp2d 1074 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  <  U )
135126, 134gtned 10172 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  =/=  ( F `  A ) )
136135adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  U  =/=  ( F `  A )
)
137125, 136eqnetrd 2861 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( F `  x )  =/=  ( F `  A )
)
138137neneqd 2799 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  ( F `  x )  =  ( F `  A ) )
139 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
140138, 139nsyl 135 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  x  =  A )
141 simp13 1093 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  RR )
142133simp3d 1075 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  <  ( F `  B ) )
143141, 142ltned 10173 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  =/=  ( F `  B ) )
144143adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  U  =/=  ( F `  B )
)
145125, 144eqnetrd 2861 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( F `  x )  =/=  ( F `  B )
)
146145neneqd 2799 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  ( F `  x )  =  ( F `  B ) )
147 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
148146, 147nsyl 135 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  x  =  B )
149 simprl3 1108 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )
150140, 148, 149ecase13d 32307 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( A  < 
x  /\  x  <  B ) )
151150ex 450 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  -> 
( A  <  x  /\  x  <  B ) ) )
152124, 151jcad 555 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  -> 
( x  e.  RR*  /\  ( A  <  x  /\  x  <  B ) ) ) )
153 3anass 1042 . . . . . 6  |-  ( ( x  e.  RR*  /\  A  <  x  /\  x  < 
B )  <->  ( x  e.  RR*  /\  ( A  <  x  /\  x  <  B ) ) )
154152, 153syl6ibr 242 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  -> 
( x  e.  RR*  /\  A  <  x  /\  x  <  B ) ) )
155 rexr 10085 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  RR* )
156 rexr 10085 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  e.  RR* )
157 elicc3 32311 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
158155, 156, 157syl2an 494 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
1591583adant3 1081 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
1601593ad2ant1 1082 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( x  e.  ( A [,] B )  <-> 
( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
161160anbi1d 741 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  <->  ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) ) )
162 elioo1 12215 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A (,) B )  <->  ( x  e.  RR*  /\  A  < 
x  /\  x  <  B ) ) )
163155, 156, 162syl2an 494 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A (,) B )  <-> 
( x  e.  RR*  /\  A  <  x  /\  x  <  B ) ) )
1641633adant3 1081 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  (
x  e.  ( A (,) B )  <->  ( x  e.  RR*  /\  A  < 
x  /\  x  <  B ) ) )
1651643ad2ant1 1082 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( x  e.  ( A (,) B )  <-> 
( x  e.  RR*  /\  A  <  x  /\  x  <  B ) ) )
166154, 161, 1653imtr4d 283 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  ->  x  e.  ( A (,) B ) ) )
167 simpr 477 . . . . 5  |-  ( ( x  e.  ( A [,] B )  /\  ( F `  x )  =  U )  -> 
( F `  x
)  =  U )
168167a1i 11 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  ->  ( F `  x )  =  U ) )
169166, 168jcad 555 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  ->  ( x  e.  ( A (,) B
)  /\  ( F `  x )  =  U ) ) )
170169reximdv2 3014 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( E. x  e.  ( A [,] B
) ( F `  x )  =  U  ->  E. x  e.  ( A (,) B ) ( F `  x
)  =  U ) )
171122, 170mpd 15 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  E. x  e.  ( A (,) B ) ( F `  x )  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028  Conncconn 21214   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-conn 21215  df-xms 22125  df-ms 22126  df-cncf 22681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator