MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem1 Structured version   Visualization version   Unicode version

Theorem nlmvscnlem1 22490
Description: Lemma for nlmvscn 22491. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f  |-  F  =  (Scalar `  W )
nlmvscn.v  |-  V  =  ( Base `  W
)
nlmvscn.k  |-  K  =  ( Base `  F
)
nlmvscn.d  |-  D  =  ( dist `  W
)
nlmvscn.e  |-  E  =  ( dist `  F
)
nlmvscn.n  |-  N  =  ( norm `  W
)
nlmvscn.a  |-  A  =  ( norm `  F
)
nlmvscn.s  |-  .x.  =  ( .s `  W )
nlmvscn.t  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
nlmvscn.u  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
nlmvscn.w  |-  ( ph  ->  W  e. NrmMod )
nlmvscn.r  |-  ( ph  ->  R  e.  RR+ )
nlmvscn.b  |-  ( ph  ->  B  e.  K )
nlmvscn.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
nlmvscnlem1  |-  ( ph  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  (
( ( B E x )  <  r  /\  ( X D y )  <  r )  ->  ( ( B 
.x.  X ) D ( x  .x.  y
) )  <  R
) )
Distinct variable groups:    B, r    D, r    E, r    x, y,
ph    x, r, y, T    U, r, x, y    F, r, x, y    K, r, y    R, r    V, r    W, r, x, y    .x. , r, x, y    X, r
Allowed substitution hints:    ph( r)    A( x, y, r)    B( x, y)    D( x, y)    R( x, y)    E( x, y)    K( x)    N( x, y, r)    V( x, y)    X( x, y)

Proof of Theorem nlmvscnlem1
StepHypRef Expression
1 nlmvscn.t . . . 4  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
2 nlmvscn.r . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
32rphalfcld 11884 . . . . 5  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
4 nlmvscn.w . . . . . . . 8  |-  ( ph  ->  W  e. NrmMod )
5 nlmvscn.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
65nlmngp2 22484 . . . . . . . 8  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
74, 6syl 17 . . . . . . 7  |-  ( ph  ->  F  e. NrmGrp )
8 nlmvscn.b . . . . . . 7  |-  ( ph  ->  B  e.  K )
9 nlmvscn.k . . . . . . . 8  |-  K  =  ( Base `  F
)
10 nlmvscn.a . . . . . . . 8  |-  A  =  ( norm `  F
)
119, 10nmcl 22420 . . . . . . 7  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  ( A `  B )  e.  RR )
127, 8, 11syl2anc 693 . . . . . 6  |-  ( ph  ->  ( A `  B
)  e.  RR )
139, 10nmge0 22421 . . . . . . 7  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  0  <_  ( A `  B
) )
147, 8, 13syl2anc 693 . . . . . 6  |-  ( ph  ->  0  <_  ( A `  B ) )
1512, 14ge0p1rpd 11902 . . . . 5  |-  ( ph  ->  ( ( A `  B )  +  1 )  e.  RR+ )
163, 15rpdivcld 11889 . . . 4  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )  e.  RR+ )
171, 16syl5eqel 2705 . . 3  |-  ( ph  ->  T  e.  RR+ )
18 nlmvscn.u . . . 4  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
19 nlmngp 22481 . . . . . . . . 9  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
204, 19syl 17 . . . . . . . 8  |-  ( ph  ->  W  e. NrmGrp )
21 nlmvscn.x . . . . . . . 8  |-  ( ph  ->  X  e.  V )
22 nlmvscn.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
23 nlmvscn.n . . . . . . . . 9  |-  N  =  ( norm `  W
)
2422, 23nmcl 22420 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  ( N `  X )  e.  RR )
2520, 21, 24syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  e.  RR )
2617rpred 11872 . . . . . . 7  |-  ( ph  ->  T  e.  RR )
2725, 26readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( N `  X )  +  T
)  e.  RR )
28 0red 10041 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
2922, 23nmge0 22421 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  0  <_  ( N `  X
) )
3020, 21, 29syl2anc 693 . . . . . . 7  |-  ( ph  ->  0  <_  ( N `  X ) )
3125, 17ltaddrpd 11905 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  <  ( ( N `  X )  +  T ) )
3228, 25, 27, 30, 31lelttrd 10195 . . . . . 6  |-  ( ph  ->  0  <  ( ( N `  X )  +  T ) )
3327, 32elrpd 11869 . . . . 5  |-  ( ph  ->  ( ( N `  X )  +  T
)  e.  RR+ )
343, 33rpdivcld 11889 . . . 4  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )  e.  RR+ )
3518, 34syl5eqel 2705 . . 3  |-  ( ph  ->  U  e.  RR+ )
3617, 35ifcld 4131 . 2  |-  ( ph  ->  if ( T  <_  U ,  T ,  U )  e.  RR+ )
37 nlmvscn.d . . . . 5  |-  D  =  ( dist `  W
)
38 nlmvscn.e . . . . 5  |-  E  =  ( dist `  F
)
39 nlmvscn.s . . . . 5  |-  .x.  =  ( .s `  W )
404adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  W  e. NrmMod )
412adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  R  e.  RR+ )
428adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  B  e.  K )
4321adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  X  e.  V )
44 simprll 802 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  x  e.  K )
45 simprlr 803 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
y  e.  V )
467adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  F  e. NrmGrp )
47 ngpms 22404 . . . . . . . 8  |-  ( F  e. NrmGrp  ->  F  e.  MetSp )
4846, 47syl 17 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  F  e.  MetSp )
499, 38mscl 22266 . . . . . . 7  |-  ( ( F  e.  MetSp  /\  B  e.  K  /\  x  e.  K )  ->  ( B E x )  e.  RR )
5048, 42, 44, 49syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( B E x )  e.  RR )
5136adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  e.  RR+ )
5251rpred 11872 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  e.  RR )
5335rpred 11872 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
5453adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  U  e.  RR )
55 simprrl 804 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( B E x )  <  if ( T  <_  U ,  T ,  U )
)
5626adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  T  e.  RR )
57 min2 12021 . . . . . . 7  |-  ( ( T  e.  RR  /\  U  e.  RR )  ->  if ( T  <_  U ,  T ,  U )  <_  U
)
5856, 54, 57syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  <_  U )
5950, 52, 54, 55, 58ltletrd 10197 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( B E x )  <  U )
60 ngpms 22404 . . . . . . . . 9  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
6120, 60syl 17 . . . . . . . 8  |-  ( ph  ->  W  e.  MetSp )
6261adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  W  e.  MetSp )
6322, 37mscl 22266 . . . . . . 7  |-  ( ( W  e.  MetSp  /\  X  e.  V  /\  y  e.  V )  ->  ( X D y )  e.  RR )
6462, 43, 45, 63syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( X D y )  e.  RR )
65 simprrr 805 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( X D y )  <  if ( T  <_  U ,  T ,  U )
)
66 min1 12020 . . . . . . 7  |-  ( ( T  e.  RR  /\  U  e.  RR )  ->  if ( T  <_  U ,  T ,  U )  <_  T
)
6756, 54, 66syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  <_  T )
6864, 52, 56, 65, 67ltletrd 10197 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( X D y )  <  T )
695, 22, 9, 37, 38, 23, 10, 39, 1, 18, 40, 41, 42, 43, 44, 45, 59, 68nlmvscnlem2 22489 . . . 4  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R )
7069expr 643 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  V ) )  -> 
( ( ( B E x )  < 
if ( T  <_  U ,  T ,  U )  /\  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )
7170ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  K  A. y  e.  V  ( ( ( B E x )  < 
if ( T  <_  U ,  T ,  U )  /\  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )
72 breq2 4657 . . . . . 6  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( B E x )  <  r  <->  ( B E x )  < 
if ( T  <_  U ,  T ,  U ) ) )
73 breq2 4657 . . . . . 6  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( X D y )  <  r  <->  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) ) )
7472, 73anbi12d 747 . . . . 5  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( ( B E x )  <  r  /\  ( X D y )  <  r )  <-> 
( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )
7574imbi1d 331 . . . 4  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( ( ( B E x )  < 
r  /\  ( X D y )  < 
r )  ->  (
( B  .x.  X
) D ( x 
.x.  y ) )  <  R )  <->  ( (
( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
)  ->  ( ( B  .x.  X ) D ( x  .x.  y
) )  <  R
) ) )
76752ralbidv 2989 . . 3  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  ( A. x  e.  K  A. y  e.  V  ( ( ( B E x )  < 
r  /\  ( X D y )  < 
r )  ->  (
( B  .x.  X
) D ( x 
.x.  y ) )  <  R )  <->  A. x  e.  K  A. y  e.  V  ( (
( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
)  ->  ( ( B  .x.  X ) D ( x  .x.  y
) )  <  R
) ) )
7776rspcev 3309 . 2  |-  ( ( if ( T  <_  U ,  T ,  U )  e.  RR+  /\ 
A. x  e.  K  A. y  e.  V  ( ( ( B E x )  < 
if ( T  <_  U ,  T ,  U )  /\  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  ( ( ( B E x )  <  r  /\  ( X D y )  < 
r )  ->  (
( B  .x.  X
) D ( x 
.x.  y ) )  <  R ) )
7836, 71, 77syl2anc 693 1  |-  ( ph  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  (
( ( B E x )  <  r  /\  ( X D y )  <  r )  ->  ( ( B 
.x.  X ) D ( x  .x.  y
) )  <  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   RR+crp 11832   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   distcds 15950   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-topgen 16104  df-xrs 16162  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391
This theorem is referenced by:  nlmvscn  22491
  Copyright terms: Public domain W3C validator