MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk6 Structured version   Visualization version   Unicode version

Theorem numclwwlk6 27248
Description: For a prime divisor  P of  K  -  1, the total number of closed walks of length  P in a  K-regular friendship graph is equal modulo  P to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
numclwwlk6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  ( ( # `  V
)  mod  P )
)

Proof of Theorem numclwwlk6
Dummy variables  n  u  v  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 numclwwlk6.v . . . . . 6  |-  V  =  (Vtx `  G )
21finrusgrfusgr 26461 . . . . 5  |-  ( ( G RegUSGraph  K  /\  V  e. 
Fin )  ->  G  e. FinUSGraph  )
323adant2 1080 . . . 4  |-  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e.  Fin )  ->  G  e. FinUSGraph  )
4 prmnn 15388 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
54adantr 481 . . . 4  |-  ( ( P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  P  e.  NN )
6 eqid 2622 . . . . 5  |-  ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } )  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } )
71, 6numclwwlk4 27244 . . . 4  |-  ( ( G  e. FinUSGraph  /\  P  e.  NN )  ->  ( # `
 ( P ClWWalksN  G ) )  =  sum_ x  e.  V  ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) ) )
83, 5, 7syl2an 494 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( # `  ( P ClWWalksN  G ) )  = 
sum_ x  e.  V  ( # `  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } ) P ) ) )
98oveq1d 6665 . 2  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  (
sum_ x  e.  V  ( # `  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } ) P ) )  mod 
P ) )
105adantl 482 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  e.  NN )
11 simp3 1063 . . . . 5  |-  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e.  Fin )  ->  V  e.  Fin )
1211adantr 481 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  V  e.  Fin )
1312adantr 481 . . . . . . . 8  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  V  e.  Fin )
14 simpr 477 . . . . . . . 8  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  x  e.  V )
1510adantr 481 . . . . . . . 8  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  P  e.  NN )
166, 1numclwwlkffin 27214 . . . . . . . 8  |-  ( ( V  e.  Fin  /\  x  e.  V  /\  P  e.  NN )  ->  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P )  e.  Fin )
1713, 14, 15, 16syl3anc 1326 . . . . . . 7  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P )  e.  Fin )
18 hashcl 13147 . . . . . . 7  |-  ( ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P )  e.  Fin  ->  ( # `
 ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  e.  NN0 )
1917, 18syl 17 . . . . . 6  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  e.  NN0 )
2019nn0zd 11480 . . . . 5  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  e.  ZZ )
2120ralrimiva 2966 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  A. x  e.  V  ( # `  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } ) P ) )  e.  ZZ )
2210, 12, 21modfsummod 14526 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( sum_ x  e.  V  ( # `  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } ) P ) )  mod 
P )  =  (
sum_ x  e.  V  ( ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  mod  P )  mod  P ) )
23 simpl 473 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin ) )
24 simpr 477 . . . . . . . . 9  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )
2524anim1i 592 . . . . . . . 8  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( ( P  e. 
Prime  /\  P  ||  ( K  -  1 ) )  /\  x  e.  V ) )
2625ancomd 467 . . . . . . 7  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( x  e.  V  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )
27 3anass 1042 . . . . . . 7  |-  ( ( x  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  <->  ( x  e.  V  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )
2826, 27sylibr 224 . . . . . 6  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( x  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )
29 fveq1 6190 . . . . . . . . . . 11  |-  ( w  =  u  ->  (
w `  0 )  =  ( u ` 
0 ) )
3029eqeq1d 2624 . . . . . . . . . 10  |-  ( w  =  u  ->  (
( w `  0
)  =  v  <->  ( u `  0 )  =  v ) )
3130cbvrabv 3199 . . . . . . . . 9  |-  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v }  =  { u  e.  ( n ClWWalksN  G )  |  ( u ` 
0 )  =  v }
3231a1i 11 . . . . . . . 8  |-  ( ( v  e.  V  /\  n  e.  NN )  ->  { w  e.  ( n ClWWalksN  G )  |  ( w `  0 )  =  v }  =  { u  e.  (
n ClWWalksN  G )  |  ( u `  0 )  =  v } )
3332mpt2eq3ia 6720 . . . . . . 7  |-  ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } )  =  ( v  e.  V ,  n  e.  NN  |->  { u  e.  ( n ClWWalksN  G )  |  ( u ` 
0 )  =  v } )
341, 33numclwwlk5 27246 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  (
x  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  mod  P )  =  1 )
3523, 28, 34syl2an2r 876 . . . . 5  |-  ( ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  /\  x  e.  V )  ->  ( ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  mod  P )  =  1 )
3635sumeq2dv 14433 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  sum_ x  e.  V  ( ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  mod  P )  =  sum_ x  e.  V 
1 )
3736oveq1d 6665 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( sum_ x  e.  V  ( ( # `  (
x ( v  e.  V ,  n  e.  NN  |->  { w  e.  ( n ClWWalksN  G )  |  ( w ` 
0 )  =  v } ) P ) )  mod  P )  mod  P )  =  ( sum_ x  e.  V 
1  mod  P )
)
3822, 37eqtrd 2656 . 2  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( sum_ x  e.  V  ( # `  ( x ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } ) P ) )  mod 
P )  =  (
sum_ x  e.  V 
1  mod  P )
)
39 1cnd 10056 . . . . 5  |-  ( ( P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  1  e.  CC )
40 fsumconst 14522 . . . . 5  |-  ( ( V  e.  Fin  /\  1  e.  CC )  -> 
sum_ x  e.  V 
1  =  ( (
# `  V )  x.  1 ) )
4111, 39, 40syl2an 494 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  sum_ x  e.  V  1  =  ( ( # `  V )  x.  1 ) )
42 hashcl 13147 . . . . . . . 8  |-  ( V  e.  Fin  ->  ( # `
 V )  e. 
NN0 )
4342nn0red 11352 . . . . . . 7  |-  ( V  e.  Fin  ->  ( # `
 V )  e.  RR )
44 ax-1rid 10006 . . . . . . 7  |-  ( (
# `  V )  e.  RR  ->  ( ( # `
 V )  x.  1 )  =  (
# `  V )
)
4543, 44syl 17 . . . . . 6  |-  ( V  e.  Fin  ->  (
( # `  V )  x.  1 )  =  ( # `  V
) )
46453ad2ant3 1084 . . . . 5  |-  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e.  Fin )  ->  ( ( # `  V
)  x.  1 )  =  ( # `  V
) )
4746adantr 481 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  V
)  x.  1 )  =  ( # `  V
) )
4841, 47eqtrd 2656 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  sum_ x  e.  V  1  =  ( # `  V
) )
4948oveq1d 6665 . 2  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( sum_ x  e.  V 
1  mod  P )  =  ( ( # `  V )  mod  P
) )
509, 38, 493eqtrd 2660 1  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  ( ( # `  V
)  mod  P )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377    mod cmo 12668   #chash 13117   sum_csu 14416    || cdvds 14983   Primecprime 15385  Vtxcvtx 25874   FinUSGraph cfusgr 26208   RegUSGraph crusgr 26452   ClWWalksN cclwwlksn 26876   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878  df-frgr 27121
This theorem is referenced by:  numclwwlk7  27249
  Copyright terms: Public domain W3C validator