MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk7 Structured version   Visualization version   Unicode version

Theorem numclwwlk7 27249
Description: Statement 14 in [Huneke] p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 27204 or frrusgrord 27205, and p divides (k-1), i.e. (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 27128, as well as k-regular (for any k), see 0vtxrgr 26472, but has no closed walk, see 0clwlk0 26992, this theorem would be false for a null graph:  ( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  0  =/=  1, so this case must be excluded (by assuming  V  =/=  (/)). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
numclwwlk7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  1 )

Proof of Theorem numclwwlk7
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) )  ->  G RegUSGraph  K )
2 simplr 792 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) )  ->  G  e. FriendGraph  )
3 simprr 796 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) )  ->  V  e.  Fin )
41, 2, 33jca 1242 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) )  -> 
( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin ) )
5 numclwwlk6.v . . . 4  |-  V  =  (Vtx `  G )
65numclwwlk6 27248 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  ( ( # `  V
)  mod  P )
)
74, 6stoic3 1701 . 2  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  ( ( # `  V
)  mod  P )
)
8 simp2 1062 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( V  =/=  (/)  /\  V  e.  Fin ) )
98ancomd 467 . . . . 5  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( V  e.  Fin  /\  V  =/=  (/) ) )
10 simp1 1061 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( G RegUSGraph  K  /\  G  e. FriendGraph  ) )
1110ancomd 467 . . . . 5  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( G  e. FriendGraph  /\  G RegUSGraph  K ) )
125frrusgrord 27205 . . . . 5  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( # `  V
)  =  ( ( K  x.  ( K  -  1 ) )  +  1 ) ) )
139, 11, 12sylc 65 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( # `  V )  =  ( ( K  x.  ( K  - 
1 ) )  +  1 ) )
1413oveq1d 6665 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  V
)  mod  P )  =  ( ( ( K  x.  ( K  -  1 ) )  +  1 )  mod 
P ) )
155numclwwlk7lem 27247 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) )  ->  K  e.  NN0 )
16 nn0cn 11302 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  K  e.  CC )
17 peano2cnm 10347 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  -  1 )  e.  CC )
1816, 17syl 17 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  -  1 )  e.  CC )
1916, 18mulcomd 10061 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( K  x.  ( K  - 
1 ) )  =  ( ( K  - 
1 )  x.  K
) )
2019oveq1d 6665 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( K  x.  ( K  -  1 ) )  mod  P )  =  ( ( ( K  -  1 )  x.  K )  mod  P
) )
2120adantr 481 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( ( K  x.  ( K  -  1 ) )  mod  P )  =  ( ( ( K  -  1 )  x.  K )  mod  P
) )
22 prmnn 15388 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  NN )
2322ad2antrl 764 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  e.  NN )
24 nn0z 11400 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  K  e.  ZZ )
25 peano2zm 11420 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
2624, 25syl 17 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  -  1 )  e.  ZZ )
2726adantr 481 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( K  -  1 )  e.  ZZ )
2824adantr 481 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  K  e.  ZZ )
2923, 27, 283jca 1242 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( P  e.  NN  /\  ( K  -  1 )  e.  ZZ  /\  K  e.  ZZ ) )
30 simprr 796 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  ||  ( K  -  1 ) )
31 mulmoddvds 15051 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( K  -  1
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( P  ||  ( K  -  1 )  ->  ( ( ( K  -  1 )  x.  K )  mod 
P )  =  0 ) )
3229, 30, 31sylc 65 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( (
( K  -  1 )  x.  K )  mod  P )  =  0 )
3321, 32eqtrd 2656 . . . . . . 7  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( ( K  x.  ( K  -  1 ) )  mod  P )  =  0 )
3422nnred 11035 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  RR )
35 prmgt1 15409 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  1  < 
P )
3634, 35jca 554 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  e.  RR  /\  1  <  P ) )
3736ad2antrl 764 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( P  e.  RR  /\  1  < 
P ) )
38 1mod 12702 . . . . . . . 8  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3937, 38syl 17 . . . . . . 7  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( 1  mod  P )  =  1 )
4033, 39oveq12d 6668 . . . . . 6  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( (
( K  x.  ( K  -  1 ) )  mod  P )  +  ( 1  mod 
P ) )  =  ( 0  +  1 ) )
4140oveq1d 6665 . . . . 5  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( (
( ( K  x.  ( K  -  1
) )  mod  P
)  +  ( 1  mod  P ) )  mod  P )  =  ( ( 0  +  1 )  mod  P
) )
42 nn0re 11301 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
43 peano2rem 10348 . . . . . . . . 9  |-  ( K  e.  RR  ->  ( K  -  1 )  e.  RR )
4442, 43syl 17 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( K  -  1 )  e.  RR )
4542, 44remulcld 10070 . . . . . . 7  |-  ( K  e.  NN0  ->  ( K  x.  ( K  - 
1 ) )  e.  RR )
4645adantr 481 . . . . . 6  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( K  x.  ( K  -  1 ) )  e.  RR )
47 1red 10055 . . . . . 6  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  1  e.  RR )
4822nnrpd 11870 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR+ )
4948ad2antrl 764 . . . . . 6  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  e.  RR+ )
50 modaddabs 12708 . . . . . 6  |-  ( ( ( K  x.  ( K  -  1 ) )  e.  RR  /\  1  e.  RR  /\  P  e.  RR+ )  ->  (
( ( ( K  x.  ( K  - 
1 ) )  mod 
P )  +  ( 1  mod  P ) )  mod  P )  =  ( ( ( K  x.  ( K  -  1 ) )  +  1 )  mod 
P ) )
5146, 47, 49, 50syl3anc 1326 . . . . 5  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( (
( ( K  x.  ( K  -  1
) )  mod  P
)  +  ( 1  mod  P ) )  mod  P )  =  ( ( ( K  x.  ( K  - 
1 ) )  +  1 )  mod  P
) )
52 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
5352oveq1i 6660 . . . . . 6  |-  ( ( 0  +  1 )  mod  P )  =  ( 1  mod  P
)
5434, 35, 38syl2anc 693 . . . . . . 7  |-  ( P  e.  Prime  ->  ( 1  mod  P )  =  1 )
5554ad2antrl 764 . . . . . 6  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( 1  mod  P )  =  1 )
5653, 55syl5eq 2668 . . . . 5  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( (
0  +  1 )  mod  P )  =  1 )
5741, 51, 563eqtr3d 2664 . . . 4  |-  ( ( K  e.  NN0  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  ( (
( K  x.  ( K  -  1 ) )  +  1 )  mod  P )  =  1 )
5815, 57stoic3 1701 . . 3  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( ( K  x.  ( K  - 
1 ) )  +  1 )  mod  P
)  =  1 )
5914, 58eqtrd 2656 . 2  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  V
)  mod  P )  =  1 )
607, 59eqtrd 2656 1  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( P ClWWalksN  G ) )  mod 
P )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832    mod cmo 12668   #chash 13117    || cdvds 14983   Primecprime 15385  Vtxcvtx 25874   RegUSGraph crusgr 26452   ClWWalksN cclwwlksn 26876   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-s3 13594  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726  df-clwwlks 26877  df-clwwlksn 26878  df-frgr 27121
This theorem is referenced by:  frgrreggt1  27251
  Copyright terms: Public domain W3C validator