MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Visualization version   Unicode version

Theorem odcau 18019
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 
P contains an element of order  P. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x  |-  X  =  ( Base `  G
)
odcau.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
odcau  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Distinct variable groups:    g, G    P, g    g, X
Allowed substitution hint:    O( g)

Proof of Theorem odcau
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3  |-  X  =  ( Base `  G
)
2 simpl1 1064 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  G  e.  Grp )
3 simpl2 1065 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  X  e.  Fin )
4 simpl3 1066 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  Prime )
5 1nn0 11308 . . . 4  |-  1  e.  NN0
65a1i 11 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  1  e.  NN0 )
7 prmnn 15388 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
84, 7syl 17 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  NN )
98nncnd 11036 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  CC )
109exp1d 13003 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  =  P )
11 simpr 477 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  ||  ( # `  X
) )
1210, 11eqbrtrd 4675 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  ||  ( # `  X ) )
131, 2, 3, 4, 6, 12sylow1 18018 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. s  e.  (SubGrp `  G )
( # `  s )  =  ( P ^
1 ) )
1410eqeq2d 2632 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  (
( # `  s )  =  ( P ^
1 )  <->  ( # `  s
)  =  P ) )
1514adantr 481 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  <->  ( # `  s
)  =  P ) )
16 fvex 6201 . . . . . . . . . . . 12  |-  ( 0g
`  G )  e. 
_V
17 hashsng 13159 . . . . . . . . . . . 12  |-  ( ( 0g `  G )  e.  _V  ->  ( # `
 { ( 0g
`  G ) } )  =  1 )
1816, 17ax-mp 5 . . . . . . . . . . 11  |-  ( # `  { ( 0g `  G ) } )  =  1
19 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  =  P )
204adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  Prime )
21 prmuz2 15408 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2220, 21syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  ( ZZ>= `  2 )
)
2319, 22eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  e.  ( ZZ>= ` 
2 ) )
24 eluz2b2 11761 . . . . . . . . . . . . 13  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  <->  ( ( # `  s
)  e.  NN  /\  1  <  ( # `  s
) ) )
2524simprbi 480 . . . . . . . . . . . 12  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  ->  1  <  ( # `  s ) )
2623, 25syl 17 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  1  <  (
# `  s )
)
2718, 26syl5eqbr 4688 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  {
( 0g `  G
) } )  < 
( # `  s ) )
28 snfi 8038 . . . . . . . . . . 11  |-  { ( 0g `  G ) }  e.  Fin
293adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  X  e.  Fin )
301subgss 17595 . . . . . . . . . . . . 13  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  X )
3130ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  C_  X )
32 ssfi 8180 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  s  C_  X )  -> 
s  e.  Fin )
3329, 31, 32syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  e.  Fin )
34 hashsdom 13170 . . . . . . . . . . 11  |-  ( ( { ( 0g `  G ) }  e.  Fin  /\  s  e.  Fin )  ->  ( ( # `  { ( 0g `  G ) } )  <  ( # `  s
)  <->  { ( 0g `  G ) }  ~<  s ) )
3528, 33, 34sylancr 695 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( ( # `
 { ( 0g
`  G ) } )  <  ( # `  s )  <->  { ( 0g `  G ) } 
~<  s ) )
3627, 35mpbid 222 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  { ( 0g `  G ) } 
~<  s )
37 sdomdif 8108 . . . . . . . . 9  |-  ( { ( 0g `  G
) }  ~<  s  ->  ( s  \  {
( 0g `  G
) } )  =/=  (/) )
3836, 37syl 17 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( s  \  { ( 0g `  G ) } )  =/=  (/) )
39 n0 3931 . . . . . . . 8  |-  ( ( s  \  { ( 0g `  G ) } )  =/=  (/)  <->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
4038, 39sylib 208 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
41 eldifsn 4317 . . . . . . . . 9  |-  ( g  e.  ( s  \  { ( 0g `  G ) } )  <-> 
( g  e.  s  /\  g  =/=  ( 0g `  G ) ) )
4231adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  C_  X
)
43 simprrl 804 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  s )
4442, 43sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  X
)
45 simprrr 805 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  =/=  ( 0g `  G ) )
46 simprll 802 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  (SubGrp `  G ) )
4733adantrr 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  Fin )
48 odcau.o . . . . . . . . . . . . . . . . . . 19  |-  O  =  ( od `  G
)
4948odsubdvds 17986 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  (SubGrp `  G )  /\  s  e.  Fin  /\  g  e.  s )  ->  ( O `  g )  ||  ( # `  s
) )
5046, 47, 43, 49syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  ( # `
 s ) )
51 simprlr 803 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( # `  s
)  =  P )
5250, 51breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  P
)
534adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  P  e.  Prime )
542adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  G  e.  Grp )
553adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  X  e.  Fin )
561, 48odcl2 17982 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  g  e.  X )  ->  ( O `  g )  e.  NN )
5754, 55, 44, 56syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  e.  NN )
58 dvdsprime 15400 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  ( O `  g )  e.  NN )  ->  (
( O `  g
)  ||  P  <->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
5953, 57, 58syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  ||  P 
<->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
6052, 59mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  P  \/  ( O `
 g )  =  1 ) )
6160ord 392 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  ( O `
 g )  =  1 ) )
62 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
6348, 62, 1odeq1 17977 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( ( O `  g )  =  1  <-> 
g  =  ( 0g
`  G ) ) )
6454, 44, 63syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  1  <->  g  =  ( 0g `  G ) ) )
6561, 64sylibd 229 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  g  =  ( 0g `  G
) ) )
6665necon1ad 2811 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  =/=  ( 0g `  G
)  ->  ( O `  g )  =  P ) )
6745, 66mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  =  P )
6844, 67jca 554 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  e.  X  /\  ( O `
 g )  =  P ) )
6968expr 643 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( (
g  e.  s  /\  g  =/=  ( 0g `  G ) )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7041, 69syl5bi 232 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( g  e.  ( s  \  {
( 0g `  G
) } )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7170eximdv 1846 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( E. g  g  e.  (
s  \  { ( 0g `  G ) } )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7240, 71mpd 15 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
73 df-rex 2918 . . . . . 6  |-  ( E. g  e.  X  ( O `  g )  =  P  <->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
7472, 73sylibr 224 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g  e.  X  ( O `  g )  =  P )
7574expr 643 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  P  ->  E. g  e.  X  ( O `  g )  =  P ) )
7615, 75sylbid 230 . . 3  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7776rexlimdva 3031 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( E. s  e.  (SubGrp `  G ) ( # `  s )  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7813, 77mpd 15 1  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ~< csdm 7954   Fincfn 7955   1c1 9937    < clt 10074   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385   Basecbs 15857   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-od 17948
This theorem is referenced by:  pgpfi  18020  ablfacrplem  18464
  Copyright terms: Public domain W3C validator