MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrplem Structured version   Visualization version   Unicode version

Theorem ablfacrplem 18464
Description: Lemma for ablfacrp2 18466. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b  |-  B  =  ( Base `  G
)
ablfacrp.o  |-  O  =  ( od `  G
)
ablfacrp.k  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
ablfacrp.l  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
ablfacrp.g  |-  ( ph  ->  G  e.  Abel )
ablfacrp.m  |-  ( ph  ->  M  e.  NN )
ablfacrp.n  |-  ( ph  ->  N  e.  NN )
ablfacrp.1  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
ablfacrp.2  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
Assertion
Ref Expression
ablfacrplem  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  =  1 )
Distinct variable groups:    x, B    x, G    x, O    x, M    x, N    ph, x
Allowed substitution hints:    K( x)    L( x)

Proof of Theorem ablfacrplem
Dummy variables  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nprmdvds1 15418 . . . . . . 7  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
21adantl 482 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  -.  p  ||  1 )
3 ablfacrp.1 . . . . . . . 8  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
43adantr 481 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  ( M  gcd  N )  =  1 )
54breq2d 4665 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( M  gcd  N
)  <->  p  ||  1 ) )
62, 5mtbird 315 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  -.  p  ||  ( M  gcd  N
) )
7 ablfacrp.k . . . . . . . . . . . . . 14  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
8 ablfacrp.g . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e.  Abel )
9 ablfacrp.m . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  NN )
109nnzd 11481 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ZZ )
11 ablfacrp.o . . . . . . . . . . . . . . . 16  |-  O  =  ( od `  G
)
12 ablfacrp.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  G
)
1311, 12oddvdssubg 18258 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Abel  /\  M  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G ) )
148, 10, 13syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G
) )
157, 14syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
1615ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  K  e.  (SubGrp `  G )
)
17 eqid 2622 . . . . . . . . . . . . 13  |-  ( Gs  K )  =  ( Gs  K )
1817subggrp 17597 . . . . . . . . . . . 12  |-  ( K  e.  (SubGrp `  G
)  ->  ( Gs  K
)  e.  Grp )
1916, 18syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( Gs  K )  e.  Grp )
2017subgbas 17598 . . . . . . . . . . . . 13  |-  ( K  e.  (SubGrp `  G
)  ->  K  =  ( Base `  ( Gs  K
) ) )
2116, 20syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  K  =  ( Base `  ( Gs  K ) ) )
22 ablfacrp.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
239nnnn0d 11351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
24 ablfacrp.n . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
2524nnnn0d 11351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
2623, 25nn0mulcld 11356 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  x.  N
)  e.  NN0 )
2722, 26eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
28 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
2912, 28eqeltri 2697 . . . . . . . . . . . . . . . 16  |-  B  e. 
_V
30 hashclb 13149 . . . . . . . . . . . . . . . 16  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
3129, 30ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
3227, 31sylibr 224 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  Fin )
33 ssrab2 3687 . . . . . . . . . . . . . . 15  |-  { x  e.  B  |  ( O `  x )  ||  M }  C_  B
347, 33eqsstri 3635 . . . . . . . . . . . . . 14  |-  K  C_  B
35 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( B  e.  Fin  /\  K  C_  B )  ->  K  e.  Fin )
3632, 34, 35sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Fin )
3736ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  K  e.  Fin )
3821, 37eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( Base `  ( Gs  K ) )  e.  Fin )
39 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  e.  Prime )
40 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  ||  ( # `  K
) )
4121fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( # `
 K )  =  ( # `  ( Base `  ( Gs  K ) ) ) )
4240, 41breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  ||  ( # `  ( Base `  ( Gs  K ) ) ) )
43 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  ( Gs  K ) )  =  ( Base `  ( Gs  K ) )
44 eqid 2622 . . . . . . . . . . . 12  |-  ( od
`  ( Gs  K ) )  =  ( od
`  ( Gs  K ) )
4543, 44odcau 18019 . . . . . . . . . . 11  |-  ( ( ( ( Gs  K )  e.  Grp  /\  ( Base `  ( Gs  K ) )  e.  Fin  /\  p  e.  Prime )  /\  p  ||  ( # `  ( Base `  ( Gs  K ) ) ) )  ->  E. g  e.  ( Base `  ( Gs  K ) ) ( ( od
`  ( Gs  K ) ) `  g )  =  p )
4619, 38, 39, 42, 45syl31anc 1329 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  E. g  e.  ( Base `  ( Gs  K ) ) ( ( od `  ( Gs  K ) ) `  g )  =  p )
4721rexeqdv 3145 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( E. g  e.  K  ( ( od `  ( Gs  K ) ) `  g )  =  p  <->  E. g  e.  ( Base `  ( Gs  K ) ) ( ( od
`  ( Gs  K ) ) `  g )  =  p ) )
4846, 47mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  E. g  e.  K  ( ( od `  ( Gs  K ) ) `  g )  =  p )
4917, 11, 44subgod 17985 . . . . . . . . . . . . 13  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  K )  ->  ( O `  g )  =  ( ( od
`  ( Gs  K ) ) `  g ) )
5016, 49sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  ( O `  g )  =  ( ( od
`  ( Gs  K ) ) `  g ) )
51 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  g  ->  ( O `  x )  =  ( O `  g ) )
5251breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( x  =  g  ->  (
( O `  x
)  ||  M  <->  ( O `  g )  ||  M
) )
5352, 7elrab2 3366 . . . . . . . . . . . . . 14  |-  ( g  e.  K  <->  ( g  e.  B  /\  ( O `  g )  ||  M ) )
5453simprbi 480 . . . . . . . . . . . . 13  |-  ( g  e.  K  ->  ( O `  g )  ||  M )
5554adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  ( O `  g )  ||  M )
5650, 55eqbrtrrd 4677 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  (
( od `  ( Gs  K ) ) `  g )  ||  M
)
57 breq1 4656 . . . . . . . . . . 11  |-  ( ( ( od `  ( Gs  K ) ) `  g )  =  p  ->  ( ( ( od `  ( Gs  K ) ) `  g
)  ||  M  <->  p  ||  M
) )
5856, 57syl5ibcom 235 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  (
( ( od `  ( Gs  K ) ) `  g )  =  p  ->  p  ||  M
) )
5958rexlimdva 3031 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( E. g  e.  K  ( ( od `  ( Gs  K ) ) `  g )  =  p  ->  p  ||  M
) )
6048, 59mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  ||  M )
6160ex 450 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( # `  K
)  ->  p  ||  M
) )
6261anim1d 588 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( (
p  ||  ( # `  K
)  /\  p  ||  N
)  ->  ( p  ||  M  /\  p  ||  N ) ) )
63 prmz 15389 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
6463adantl 482 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  ZZ )
65 hashcl 13147 . . . . . . . . . 10  |-  ( K  e.  Fin  ->  ( # `
 K )  e. 
NN0 )
6636, 65syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  K
)  e.  NN0 )
6766nn0zd 11480 . . . . . . . 8  |-  ( ph  ->  ( # `  K
)  e.  ZZ )
6867adantr 481 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  ( # `  K
)  e.  ZZ )
6924nnzd 11481 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
7069adantr 481 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
71 dvdsgcdb 15262 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( # `  K )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( p  ||  ( # `
 K )  /\  p  ||  N )  <->  p  ||  (
( # `  K )  gcd  N ) ) )
7264, 68, 70, 71syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( (
p  ||  ( # `  K
)  /\  p  ||  N
)  <->  p  ||  ( (
# `  K )  gcd  N ) ) )
7310adantr 481 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
74 dvdsgcdb 15262 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( p  ||  M  /\  p  ||  N )  <-> 
p  ||  ( M  gcd  N ) ) )
7564, 73, 70, 74syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( (
p  ||  M  /\  p  ||  N )  <->  p  ||  ( M  gcd  N ) ) )
7662, 72, 753imtr3d 282 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( ( # `  K
)  gcd  N )  ->  p  ||  ( M  gcd  N ) ) )
776, 76mtod 189 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  -.  p  ||  ( ( # `  K
)  gcd  N )
)
7877nrexdv 3001 . . 3  |-  ( ph  ->  -.  E. p  e. 
Prime  p  ||  ( (
# `  K )  gcd  N ) )
79 exprmfct 15416 . . 3  |-  ( ( ( # `  K
)  gcd  N )  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  ( ( # `  K )  gcd  N
) )
8078, 79nsyl 135 . 2  |-  ( ph  ->  -.  ( ( # `  K )  gcd  N
)  e.  ( ZZ>= ` 
2 ) )
8124nnne0d 11065 . . . . . 6  |-  ( ph  ->  N  =/=  0 )
82 simpr 477 . . . . . . 7  |-  ( ( ( # `  K
)  =  0  /\  N  =  0 )  ->  N  =  0 )
8382necon3ai 2819 . . . . . 6  |-  ( N  =/=  0  ->  -.  ( ( # `  K
)  =  0  /\  N  =  0 ) )
8481, 83syl 17 . . . . 5  |-  ( ph  ->  -.  ( ( # `  K )  =  0  /\  N  =  0 ) )
85 gcdn0cl 15224 . . . . 5  |-  ( ( ( ( # `  K
)  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( ( # `  K )  =  0  /\  N  =  0 ) )  ->  (
( # `  K )  gcd  N )  e.  NN )
8667, 69, 84, 85syl21anc 1325 . . . 4  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  e.  NN )
87 elnn1uz2 11765 . . . 4  |-  ( ( ( # `  K
)  gcd  N )  e.  NN  <->  ( ( (
# `  K )  gcd  N )  =  1  \/  ( ( # `  K )  gcd  N
)  e.  ( ZZ>= ` 
2 ) ) )
8886, 87sylib 208 . . 3  |-  ( ph  ->  ( ( ( # `  K )  gcd  N
)  =  1  \/  ( ( # `  K
)  gcd  N )  e.  ( ZZ>= `  2 )
) )
8988ord 392 . 2  |-  ( ph  ->  ( -.  ( (
# `  K )  gcd  N )  =  1  ->  ( ( # `  K )  gcd  N
)  e.  ( ZZ>= ` 
2 ) ) )
9080, 89mt3d 140 1  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   #chash 13117    || cdvds 14983    gcd cgcd 15216   Primecprime 15385   Basecbs 15857   ↾s cress 15858   Grpcgrp 17422  SubGrpcsubg 17588   odcod 17944   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-od 17948  df-cmn 18195  df-abl 18196
This theorem is referenced by:  ablfacrp2  18466
  Copyright terms: Public domain W3C validator